Suppr超能文献

甘油向1,3 - 丙二醇的微生物转化:天然生产菌丁酸梭菌VPI 3266与工程菌株丙酮丁醇梭菌DG1(pSPD5)的生理比较

Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5).

作者信息

González-Pajuelo María, Meynial-Salles Isabelle, Mendes Filipa, Soucaille Philippe, Vasconcelos Isabel

机构信息

Escola Superior B8iotecnologia, Universidade Catolica Portuguesa, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.

出版信息

Appl Environ Microbiol. 2006 Jan;72(1):96-101. doi: 10.1128/AEM.72.1.96-101.2006.

Abstract

Clostridium acetobutylicum is not able to grow on glycerol as the sole carbon source since it cannot reoxidize the excess of NADH generated by glycerol catabolism. Nevertheless, when the pSPD5 plasmid, carrying the NADH-consuming 1,3-propanediol pathway from C. butyricum VPI 3266, was introduced into C. acetobutylicum DG1, growth on glycerol was achieved, and 1,3-propanediol was produced. In order to compare the physiological behavior of the recombinant C. acetobutylicum DG1(pSPD5) strain with that of the natural 1,3-propanediol producer C. butyricum VPI 3266, both strains were grown in chemostat cultures with glycerol as the sole carbon source. The same "global behavior" was observed for both strains: 1,3-propanediol was the main fermentation product, and the qH2 flux was very low. However, when looking at key intracellular enzyme levels, significant differences were observed. Firstly, the pathway for glycerol oxidation was different: C. butyricum uses a glycerol dehydrogenase and a dihydroxyacetone kinase, while C. acetobutylicum uses a glycerol kinase and a glycerol-3-phosphate dehydrogenase. Secondly, the electron flow is differentially regulated: (i) in C. butyricum VPI 3266, the in vitro hydrogenase activity is 10-fold lower than that in C. acetobutylicum DG1(pSPD5), and (ii) while the ferredoxin-NAD+ reductase activity is high and the NADH-ferredoxin reductase activity is low in C. acetobutylicum DG1(pSPD5), the reverse is observed for C. butyricum VPI 3266. Thirdly, lactate dehydrogenase activity is only detected in the C. acetobutylicum DG1(pSPD5) culture, explaining why this microorganism produces lactate.

摘要

丙酮丁醇梭菌不能以甘油作为唯一碳源生长,因为它无法将甘油分解代谢产生的过量还原型辅酶Ⅰ(NADH)重新氧化。然而,当携带来自丁酸梭菌VPI 3266的消耗NADH的1,3 - 丙二醇途径的pSPD5质粒被导入丙酮丁醇梭菌DG1时,该菌株能够在甘油上生长并产生1,3 - 丙二醇。为了比较重组丙酮丁醇梭菌DG1(pSPD5)菌株与天然1,3 - 丙二醇产生菌丁酸梭菌VPI 3266的生理行为,将这两种菌株在以甘油作为唯一碳源的恒化器培养物中培养。观察到这两种菌株具有相同的“整体行为”:1,3 - 丙二醇是主要发酵产物,并且氢气通量非常低。然而,当观察关键的细胞内酶水平时,发现了显著差异。首先,甘油氧化途径不同:丁酸梭菌使用甘油脱氢酶和二羟基丙酮激酶,而丙酮丁醇梭菌使用甘油激酶和甘油 - 3 - 磷酸脱氢酶。其次,电子流的调节方式不同:(i)在丁酸梭菌VPI 3266中,体外氢化酶活性比丙酮丁醇梭菌DG1(pSPD5)低10倍;(ii)虽然在丙酮丁醇梭菌DG1(pSPD5)中,铁氧化还原蛋白 - NAD⁺还原酶活性高而NADH - 铁氧化还原蛋白还原酶活性低,但在丁酸梭菌VPI 3266中情况相反。第三,仅在丙酮丁醇梭菌DG1(pSPD5)培养物中检测到乳酸脱氢酶活性,这解释了为什么这种微生物会产生乳酸。

相似文献

2
Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol.
Metab Eng. 2005 Sep-Nov;7(5-6):329-36. doi: 10.1016/j.ymben.2005.06.001. Epub 2005 Aug 10.
3
Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol.
J Ind Microbiol Biotechnol. 2004 Oct;31(9):442-6. doi: 10.1007/s10295-004-0168-z. Epub 2004 Sep 16.
4
Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures.
J Bacteriol. 2001 Mar;183(5):1748-54. doi: 10.1128/JB.183.5.1748-1754.2001.
5
1,3-Propanediol production in a two-step process fermentation from renewable feedstock.
Appl Microbiol Biotechnol. 2011 Nov;92(3):519-27. doi: 10.1007/s00253-011-3369-1. Epub 2011 Jun 9.
6
Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process.
Appl Microbiol Biotechnol. 2011 Jul;91(1):101-12. doi: 10.1007/s00253-011-3247-x. Epub 2011 Apr 12.
7
Production of 1,3-Propanediol by Clostridium butyricum VPI 3266 in continuous cultures with high yield and productivity.
J Ind Microbiol Biotechnol. 2005 Sep;32(9):391-6. doi: 10.1007/s10295-005-0012-0. Epub 2005 Nov 3.
8
Adaptation dynamics of Clostridium butyricum in high 1,3-propanediol content media.
Appl Microbiol Biotechnol. 2012 Sep;95(6):1541-52. doi: 10.1007/s00253-012-4003-6. Epub 2012 Mar 29.
10
High-level production of 1,3-propanediol from crude glycerol by Clostridium butyricum AKR102a.
Appl Microbiol Biotechnol. 2012 Feb;93(3):1057-63. doi: 10.1007/s00253-011-3595-6. Epub 2011 Oct 5.

引用本文的文献

2
Comparative Metabolomics of ATCC824 and its Engineered Strain, DG1.
J Microbiol Biotechnol. 2025 Feb 25;35:e2407028. doi: 10.4014/jmb.2407.07028.
3
Changes in a glycerol-degrading bacterial community in an upflow anaerobic reactor for 1,3-propanediol production.
Appl Microbiol Biotechnol. 2025 Feb 1;109(1):34. doi: 10.1007/s00253-025-13413-5.
5
Metabolic engineering of to improve glycerol metabolism and furfural tolerance.
Biotechnol Biofuels. 2019 Mar 9;12:50. doi: 10.1186/s13068-019-1388-9. eCollection 2019.
6
Rewiring glycerol metabolism for enhanced production of poly-γ-glutamic acid in .
Biotechnol Biofuels. 2018 Nov 9;11:306. doi: 10.1186/s13068-018-1311-9. eCollection 2018.
7
An Overview of Biorefinery Derived Platform Chemicals from a Cellulose and Hemicellulose Biorefinery.
Clean Technol Environ Policy. 2018 Sep;20(7):1615-1630. doi: 10.1007/s10098-018-1568-5.
10
Key enzymes catalyzing glycerol to 1,3-propanediol.
Biotechnol Biofuels. 2016 Mar 10;9:57. doi: 10.1186/s13068-016-0473-6. eCollection 2016.

本文引用的文献

1
Parameters Affecting Solvent Production by Clostridium pasteurianum.
Appl Environ Microbiol. 1992 Apr;58(4):1233-9. doi: 10.1128/aem.58.4.1233-1239.1992.
2
Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol.
Metab Eng. 2005 Sep-Nov;7(5-6):329-36. doi: 10.1016/j.ymben.2005.06.001. Epub 2005 Aug 10.
4
Metabolism of glycerol by an acrolein-forming lactobacillus.
J Bacteriol. 1960 Feb;79(2):261-6. doi: 10.1128/jb.79.2.261-266.1960.
5
Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum.
Proc Natl Acad Sci U S A. 2003 Apr 29;100(9):5010-5. doi: 10.1073/pnas.0734105100. Epub 2003 Apr 18.
6
Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum.
J Bacteriol. 2001 Aug;183(16):4823-38. doi: 10.1128/JB.183.16.4823-4838.2001.
7
Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures.
J Bacteriol. 2001 Mar;183(5):1748-54. doi: 10.1128/JB.183.5.1748-1754.2001.
9
Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824.
Microbiology (Reading). 1996 Aug;142 ( Pt 8):2079-86. doi: 10.1099/13500872-142-8-2079.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验