Suppr超能文献

圆柱面上受限硬球的积分方程理论:熵驱动的各向异性堆积

Integral equation theory for hard spheres confined on a cylindrical surface: anisotropic packing entropically driven.

作者信息

Iwaki Takafumi, Shew Chwen-Yang, Gumbs Godfrey

机构信息

Okayama Institute for Quantum Physics, 1-9-1 Kyoyama, Okayama 700-0015, Japan.

出版信息

J Chem Phys. 2005 Sep 22;123(12):124712. doi: 10.1063/1.2038727.

Abstract

The structure of two-dimensional (2D) hard-sphere fluids on a cylindrical surface is investigated by means of the Ornstein-Zernike integral equation with the Percus-Yevick and the hypernetted-chain approximation. The 2D cylindrical coordinate breaks the spherical symmetry. Hence, the pair-correlation function is reformulated as a two-variable function to account for the packing along and around the cylinder. Detailed pair-correlation function calculations based on the two integral equation theories are compared with Monte Carlo simulations. In general, the Percus-Yevick theory is more accurate than the hypernetted-chain theory, but exceptions are observed for smaller cylinders. Moreover, analysis of the angular-dependent contact values shows that particles are preferentially packed anisotropically. The origin of such an anisotropic packing is driven by the entropic effect because the energy of all the possible system configurations of a dense hard-sphere fluid is the same. In addition, the anisotropic packing observed in our model studies serves as a basis for linking the close packing with the morphology of an ordered structure for particles adsorbed onto a cylindrical nanotube.

摘要

通过具有珀库斯 - 耶维克(Percus - Yevick)近似和超网链近似的奥恩斯坦 - 泽尔尼克(Ornstein - Zernike)积分方程,研究了圆柱面上二维(2D)硬球流体的结构。二维圆柱坐标打破了球对称性。因此,对关联函数被重新表述为一个双变量函数,以考虑沿圆柱以及围绕圆柱的堆积情况。基于这两种积分方程理论的详细对关联函数计算结果与蒙特卡罗模拟进行了比较。一般来说,珀库斯 - 耶维克理论比超网链理论更准确,但对于较小的圆柱会观察到例外情况。此外,对角向相关接触值的分析表明,粒子优先以各向异性方式堆积。这种各向异性堆积的起源是由熵效应驱动的,因为致密硬球流体所有可能系统构型的能量是相同的。另外,我们模型研究中观察到的各向异性堆积为将紧密堆积与吸附在圆柱形纳米管上的粒子有序结构的形态联系起来提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验