Colberg M, Friedrichs G
Institut für Physikalische Chemie, Olshausenstr. 40, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany.
J Phys Chem A. 2006 Jan 12;110(1):160-70. doi: 10.1021/jp055168r.
The rate of the reaction 1, HCO+O2-->HO2+CO, has been determined (i) at room temperature using a slow flow reactor setup (20 mbar<p<500 mbar) and (ii) in the temperature range 739 K<T<1108 K behind reflected shock waves (0.82 bar<p<1.84 bar) employing a perturbation approach. Following the 193 nm excimer laser photolysis of mixtures of glyoxal in Ar, concentration-time profiles were measured using frequency modulation (FM) detection of HCO at a wavelength of lambda=614.752 nm. Observed differences between HCO concentration-time profiles measured with and without O2 added to the reaction mixtures could be almost exclusively attributed to reaction 1. The determined rate constants, k1(295 K)=(3.55+/-0.05)x10(12) cm3 mol-1 s-1, k1(739-1108 K)=3.7x10(13) exp(-13 kJ mol-1/RT) cm3 mol-1 s-1 (Delta log k1=+/-0.16), reveal a slightly positive temperature dependence of reaction 1 at high temperatures. Furthermore, the 193 nm photolysis of glyoxal, (CHO)2, has been proven to be an efficient HCO source. Besides HCO, photolysis of the precursor also produces H atoms. The ratio of initially generated H atoms and HCO radicals, f=[H]0/[HCO]0total, was found to depend on the total density rho. At room temperature, it varies from f=1.6 at rho=8x10(-7) mol cm-3 to f=3.0 at rho=2x10(-5) mol cm-3. H atoms are transformed via reaction 4, H+(CHO)2-->H2+HCO+CO, into additional HCO radicals. The rate constants of reaction 4 were determined from unperturbed photolysis experiments to be k4(295 K)=(3.6+/-0.3)x10(10) cm3 mol-1 s-1 and k4(769-1107 K)=5.4x10(13)exp(-18 kJ mol-1/RT) cm3 mol-1 s-1(Delta log k4=+/-0.12).
反应1,即HCO + O₂→HO₂ + CO的反应速率,已通过以下两种方式测定:(i)在室温下使用慢流反应器装置(20毫巴<p<500毫巴);(ii)在739 K<T<1108 K的温度范围内,在反射激波后(0.82巴<p<1.84巴)采用微扰法进行测定。在氩气中用193纳米准分子激光光解乙二醛混合物后,使用波长λ = 614.752纳米处的HCO频率调制(FM)检测来测量浓度 - 时间曲线。在反应混合物中添加和不添加O₂时测量的HCO浓度 - 时间曲线之间观察到的差异几乎完全归因于反应1。所确定的速率常数,k1(295 K) = (3.55 ± 0.05)×10¹² 立方厘米·摩尔⁻¹·秒⁻¹,k1(739 - 1108 K) = 3.7×10¹³ exp( - 13千焦·摩尔⁻¹/RT) 立方厘米·摩尔⁻¹·秒⁻¹(Δlog k1 = ±0.16),表明反应1在高温下具有略微正的温度依赖性。此外,已证明乙二醛(CHO)₂的193纳米光解是一种有效的HCO源。除了HCO,前驱体的光解还产生H原子。最初生成的H原子与HCO自由基的比率,f = [H]₀ / [HCO]₀total,被发现取决于总密度ρ。在室温下,它从ρ = 8×10⁻⁷ 摩尔·立方厘米⁻³ 时的f = 1.6变化到ρ = 2×10⁻⁵ 摩尔·立方厘米⁻³ 时的f = 3.0。H原子通过反应4,即H + (CHO)₂→H₂ + HCO + CO,转化为额外的HCO自由基。反应4的速率常数从未受微扰的光解实验中确定为k4(295 K) = (3.6 ± 0.3)×10¹⁰ 立方厘米·摩尔⁻¹·秒⁻¹ 和k4(769 - 1107 K) = 5.4×10¹³ exp( - 18千焦·摩尔⁻¹/RT) 立方厘米·摩尔⁻¹·秒⁻¹(Δlog k4 = ±0.12)。