Cukier R I, Morillo M
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
J Chem Phys. 2005 Dec 15;123(23):234908. doi: 10.1063/1.2137704.
Time scales available to biomolecular simulations are limited by barriers among states in a high-dimensional configuration space. If equilibrium averages are to be computed, methods that accelerate barrier passage can be carried out by non-Boltzmann sampling. Barriers can be reduced by modifying the potential-energy function and running dynamics on the modified surface. The Boltzmann average can be restored by reweighting each point along the trajectory. We introduce a targeted reweighting scheme where some barriers are reduced, while others are not modified. If only equilibrium properties are desired, trajectories in configuration space can be generated by Langevin dynamics. Once past a transient time, these trajectories guarantee equilibrium sampling when reweighted. A relatively high-order stochastic integration method can be used to generate trajectories. The targeted reweighting scheme is illustrated by a series of double-well models with varying degrees of freedom and shown to be a very efficient method to provide the correct equilibrium distributions, in comparison with analytic results. The scheme is applied to a protein model consisting of a chain of connected beads characterized by dihedral angles and the van der Waals interactions among the beads. We investigate the sampling of configuration space for a model of a helix-turn-helix motif. The targeted reweighting is found to be essential to permit the original all-helical conformation to bend and generate turn structures while still maintaining the alpha-helical segments.
生物分子模拟可用的时间尺度受到高维构型空间中状态间势垒的限制。如果要计算平衡平均值,可以通过非玻尔兹曼采样来执行加速势垒穿越的方法。可以通过修改势能函数并在修改后的表面上运行动力学来降低势垒。通过对轨迹上的每个点进行重新加权,可以恢复玻尔兹曼平均值。我们引入了一种有针对性的重新加权方案,其中一些势垒被降低,而另一些则不被修改。如果只需要平衡性质,可以通过朗之万动力学在构型空间中生成轨迹。经过一段瞬态时间后,这些轨迹在重新加权时保证平衡采样。可以使用相对高阶的随机积分方法来生成轨迹。通过一系列具有不同自由度的双阱模型说明了有针对性的重新加权方案,并且与解析结果相比,该方案被证明是提供正确平衡分布的非常有效的方法。该方案应用于由以二面角和珠子间范德华相互作用为特征的连接珠子链组成的蛋白质模型。我们研究了螺旋-转角-螺旋基序模型的构型空间采样。发现有针对性的重新加权对于允许原始的全螺旋构象弯曲并生成转角结构同时仍保持α-螺旋段至关重要。