Suppr超能文献

Transforming growth factor-beta1 induces transdifferentiation of fibroblasts into myofibroblasts in hypoxic pulmonary vascular remodeling.

作者信息

Jiang Yong-Liang, Dai Ai-Guo, Li Qi-Fang, Hu Rui-Cheng

机构信息

Department of Respiratory Medicine, Hunan Institute of Gerontology, Hunan Province Geriatric Hospital, Changsha 410001, China.

出版信息

Acta Biochim Biophys Sin (Shanghai). 2006 Jan;38(1):29-36. doi: 10.1111/j.1745-7270.2006.00123.x.

Abstract

The muscularization of non-muscular pulmonary arterioles is an important pathological feature of hypoxic pulmonary vascular remodeling. However, the origin of the cells involved in this process is still not well understood. The present study was undertaken to test the hypothesis that transforming growth factor-beta1 (TGF-beta1) can induce transdifferentiation of fibroblasts into myofibroblasts, which might play a key role in the muscularization of non-muscular pulmonary arterioles. It was found that mean pulmonary arterial pressure increased significantly after 7 d of hypoxia. Pulmonary artery remodeling index and right ventricular hypertrophy became evident after 14 d of hypoxia. The distribution of nonmuscular, partially muscular, and muscular vessels was significantly different after 7 d of hypoxia. Immunocytochemistry results demonstrated that the expression of a-smooth muscle actin was increased in intra-acinar pulmonary arteries with increasing hypoxic time. TGF-beta1 mRNA expression in pulmonary arterial walls was increased significantly after 14 d of hypoxia, but showed no obvious changes after 3 or 7 d of hypoxia. In pulmonary tunica adventitia and tunica media, TGF-beta1 protein staining was poorly positive in control rats, but was markedly enhanced after 3 d of hypoxia, reaching its peak after 7 d of hypoxia. The myofibroblast phenotype was confirmed by electron microscopy, which revealed microfilaments and a well-developed rough endoplasmic reticulum. Taken together, our results suggested that TGF-beta1 induces transdifferentiation of fibroblasts into myofibroblasts, which is important in hypoxic pulmonary vascular remodeling.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验