Suppr超能文献

作为消除重复实验中不同实验批次间差异的工具的因子校正:在分子生物学和逆转录病毒学中的应用

Factor correction as a tool to eliminate between-session variation in replicate experiments: application to molecular biology and retrovirology.

作者信息

Ruijter Jan M, Thygesen Helene H, Schoneveld Onard J L M, Das Atze T, Berkhout Ben, Lamers Wouter H

机构信息

Department of Anatomy and Embryology, Academic Medical Centre, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.

出版信息

Retrovirology. 2006 Jan 6;3:2. doi: 10.1186/1742-4690-3-2.

Abstract

BACKGROUND

In experimental biology, including retrovirology and molecular biology, replicate measurement sessions very often show similar proportional differences between experimental conditions, but different absolute values, even though the measurements were presumably carried out under identical circumstances. Although statistical programs enable the analysis of condition effects despite this replication error, this approach is hardly ever used for this purpose. On the contrary, most researchers deal with such between-session variation by normalisation or standardisation of the data. In normalisation all values in a session are divided by the observed value of the 'control' condition, whereas in standardisation, the sessions' means and standard deviations are used to correct the data. Normalisation, however, adds variation because the control value is not without error, while standardisation is biased if the data set is incomplete.

RESULTS

In most cases, between-session variation is multiplicative and can, therefore, be removed by division of the data in each session with a session-specific correction factor. Assuming one level of multiplicative between-session error, unbiased session factors can be calculated from all available data through the generation of a between-session ratio matrix. Alternatively, these factors can be estimated with a maximum likelihood approach. The effectiveness of this correction method, dubbed "factor correction", is demonstrated with examples from the field of molecular biology and retrovirology. Especially when not all conditions are included in every measurement session, factor correction results in smaller residual error than normalisation and standardisation and therefore allows the detection of smaller treatment differences. Factor correction was implemented into an easy-to-use computer program that is available on request at: biolab-services@amc.uva.nl?subject=factor.

CONCLUSION

Factor correction is an effective and efficient way to deal with between-session variation in multi-session experiments.

摘要

背景

在包括逆转录病毒学和分子生物学在内的实验生物学中,重复测量实验常常显示,尽管测量可能是在相同条件下进行的,但实验条件之间的比例差异相似,而绝对值却不同。尽管统计程序能够在存在这种重复误差的情况下分析条件效应,但这种方法几乎从未用于此目的。相反,大多数研究人员通过对数据进行归一化或标准化来处理这种实验间的差异。在归一化中,一个实验中的所有值都除以“对照”条件的观测值,而在标准化中,则使用实验的均值和标准差来校正数据。然而,归一化会增加变异性,因为对照值并非没有误差,而如果数据集不完整,标准化则会产生偏差。

结果

在大多数情况下,实验间的差异是成倍的,因此可以通过用特定实验的校正因子除以每个实验中的数据来消除。假设存在一级成倍的实验间误差,可以通过生成实验间比率矩阵,从所有可用数据中计算出无偏的实验因子。或者,也可以用最大似然法估计这些因子。分子生物学和逆转录病毒学领域的实例证明了这种称为“因子校正”的校正方法的有效性。特别是当并非所有条件都包含在每个测量实验中时,因子校正产生的残余误差比归一化和标准化更小,因此能够检测到更小的处理差异。因子校正已被实现为一个易于使用的计算机程序,可通过以下方式索取:biolab-services@amc.uva.nl?subject=factor。

结论

因子校正是处理多实验间实验差异的一种有效且高效的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/032c/1368993/b17d749d21f7/1742-4690-3-2-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验