Renner Christian, Piehler Jacob, Schrader Thomas
Philipps-Universität Marburg, Fachbereich Chemie, Marburg, Germany.
J Am Chem Soc. 2006 Jan 18;128(2):620-8. doi: 10.1021/ja0560229.
Free radical polymerization of methacrylamide-based bisphosphonates turns weak arginine binders into powerful polymeric protein receptors. Dansyl-labeled homo- and copolymers with excellent water solubility are accessible through a simple copolymerization protocol. Modeling studies point to a striking structural difference between the stiff rodlike densely packed homopolymer 1 and the flexible copolymer 2 with spatially separated bisphosphonate units. Fluorescence titrations in buffered aqueous solution (pH = 7.0) confirm the superior affinity of the homopolymer toward oligoarginine peptides reaching nanomolar K(D) values for the Tat peptide. Basic proteins are bound almost equally well by 1 and 2 with micromolar affinities, with the latter producing much more soluble complexes. The Arg selectivity of the monomer is transferred to the polymer, which binds Arg-rich proteins 1 order of magnitude tighter than lysine-rich pendants of comparable pI, size, and (Arg/Lys vs Glu/Asp) ratio. Noncovalent deposition of both polymers on glass substrates via polyethyleneimine layers results in new materials suitable for peptide and protein immobilization. RIfS measurements allow calculation of association constants K(a) as well as dissociation kinetics k(D). They generally confirm the trends already found in free solution. Close inspection of electrostatic potential surfaces suggest that basic domains favor protein binding on the flat surface. The high specificity of the bisphosphonate polymers toward basic proteins is demonstrated by comparison with polyvinyl sulfate, which has almost no effect in RIfS experiments. Thus, copolymerization of few different comonomer units without cross-linking enables surface recognition of basic proteins in free solution as well as their effective immobilization on surfaces.
基于甲基丙烯酰胺的双膦酸盐的自由基聚合将弱精氨酸结合剂转变为强大的聚合物蛋白质受体。通过简单的共聚方案可获得具有优异水溶性的丹磺酰标记的均聚物和共聚物。建模研究表明,刚性棒状紧密堆积的均聚物1与具有空间分离双膦酸盐单元的柔性共聚物2之间存在显著的结构差异。在缓冲水溶液(pH = 7.0)中的荧光滴定证实了均聚物对寡聚精氨酸肽具有更高的亲和力,对Tat肽的K(D)值达到纳摩尔级别。碱性蛋白质与1和2的结合效果几乎相同,亲和力为微摩尔级别,后者产生的复合物溶解性更强。单体的精氨酸选择性转移到了聚合物上,聚合物结合富含精氨酸的蛋白质的紧密程度比具有可比pI、大小和(精氨酸/赖氨酸与谷氨酸/天冬氨酸)比例的富含赖氨酸的侧链高一个数量级。两种聚合物通过聚乙烯亚胺层非共价沉积在玻璃基板上,形成了适用于肽和蛋白质固定的新材料。反射干涉光谱测量(RIfS)可以计算缔合常数K(a)以及解离动力学k(D)。它们总体上证实了在自由溶液中已经发现的趋势。对静电势表面的仔细检查表明,碱性区域有利于蛋白质在平面上的结合。与聚硫酸乙烯酯相比,双膦酸盐聚合物对碱性蛋白质具有高特异性,聚硫酸乙烯酯在反射干涉光谱实验中几乎没有影响。因此,少量不同共聚单体单元的共聚且不进行交联能够实现对自由溶液中碱性蛋白质的表面识别以及它们在表面上的有效固定化。