Bentahir Mostafa, Nyabi Omar, Verhamme Jan, Tolia Alexandra, Horré Katrien, Wiltfang Jens, Esselmann Hermann, De Strooper Bart
Neuronal Cell Biology and Gene Transfer, Center for Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB4) and K. U. Leuven, Leuven, Belgium.
J Neurochem. 2006 Feb;96(3):732-42. doi: 10.1111/j.1471-4159.2005.03578.x. Epub 2006 Jan 9.
Mutations in human presenilin (PS) genes cause aggressive forms of familial Alzheimer's disease. Presenilins are polytopic proteins that harbour the catalytic site of the gamma-secretase complex and cleave many type I transmembrane proteins including beta-amyloid precursor protein (APP), Notch and syndecan 3. Contradictory results have been published concerning whether PS mutations cause 'abnormal' gain or (partial) loss of function of gamma-secretase. To avoid the possibility that wild-type PS confounds the interpretation of the results, we used presenilin-deficient cells to analyse the effects of different clinical mutations on APP, Notch, syndecan 3 and N-cadherin substrate processing, and on gamma-secretase complex formation. A loss in APP and Notch substrate processing at epsilon and S3 cleavage sites was observed with all presenilin mutants, whereas APP processing at the gamma site was affected in variable ways. PS1-Delta9 and PS1-L166P mutations caused a reduction in beta-amyloid peptide Abeta40 production whereas PS1-G384A mutant significantly increased Abeta42. Interestingly PS2, a close homologue of PS1, appeared to be a less efficient producer of Abeta than PS1. Finally, subtle differences in gamma-secretase complex assembly were observed. Overall, our results indicate that the different mutations in PS affect gamma-secretase structure or function in multiple ways.
人类早老素(PS)基因突变会导致侵袭性家族性阿尔茨海默病。早老素是多结构域蛋白,包含γ-分泌酶复合物的催化位点,并切割多种I型跨膜蛋白,包括β-淀粉样前体蛋白(APP)、Notch和Syndecan 3。关于PS突变是否导致γ-分泌酶功能的“异常”获得或(部分)丧失,已有相互矛盾的结果发表。为避免野生型PS混淆结果解释的可能性,我们使用早老素缺陷细胞来分析不同临床突变对APP、Notch、Syndecan 3和N-钙黏蛋白底物加工以及γ-分泌酶复合物形成的影响。所有早老素突变体均观察到APP和Notch底物在ε和S3切割位点的加工减少,而γ位点的APP加工受到不同程度的影响。PS1-Δ9和PS1-L166P突变导致β-淀粉样肽Aβ40产生减少,而PS1-G384A突变体显著增加Aβ42。有趣的是,PS1的紧密同源物PS2似乎比PS1产生Aβ的效率更低。最后,观察到γ-分泌酶复合物组装存在细微差异。总体而言,我们的结果表明,PS中的不同突变以多种方式影响γ-分泌酶的结构或功能。