Selvakumar Balaraman, Rajendiran Venugopal, Uma Maheswari Palanisamy, Stoeckli-Evans Helen, Palaniandavar Mallayan
School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India.
J Inorg Biochem. 2006 Mar;100(3):316-30. doi: 10.1016/j.jinorgbio.2005.11.018. Epub 2006 Jan 9.
The coordination geometry around copper(II) in [Cu(imda)(phen)(H2O)] (1) (H2imda = iminodiacetic acid, phen = 1,10-phenanthroline) is described as distorted octahedral while those in [Cu(imda)(5,6-dmp)] (2) (5,6-dmp = 5,6-dimethyl-1,10-phenanthroline) and [Cu(imda)(dpq)] (3) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline) as trigonal bipyramidal distorted square-based pyramidal with the imda anion facially coordinated to copper(II). Absorption spectral (Kb: 1, 0.60+/-0.04x10(3); 2, 3.9+/-0.3x10(3); 3, 1.7+/-0.5x10(4) M(-1)) and thermal denaturation studies (deltaTm: 1, 5.70+/-0.05; 2, 5.5+/-10; 3, 10.6+/-10 degrees C) and viscosity measurements indicate that 3 interacts with calf thymus DNA more strongly than 1 and 2. The relative viscosities of DNA bound to 1 and 3 increase while that of DNA bound to 2 decreases indicating formation of kinks or bends and/or conversion of B to A conformation as revealed by the decrease in intensity of the helicity band in the circular dichroism spectrum of DNA. While 1 and 3 are bound to DNA through partial intercalation, respectively, of phen ring and the extended planar ring of dpq with DNA base stack, the complex 2 is involved in groove binding. All the complexes show cleavage of pBR322 supercoiled DNA in the presence of ascorbic acid with the cleavage efficiency varying in the order 3 > 1 > 2. The highest oxidative DNA cleavage of dpq complex is ascribed to its highest Cu(II)/Cu(I) redox potential. Oxidative cleavage studies using distamycin reveal minor groove binding for the dpq complex but a major groove binding for the phen and 5,6-dmp complexes. Also, all the complexes show hydrolytic DNA cleavage activity in the absence of light or a reducing agent with cleavage efficiency varying in the order 1 > 3 > 2.
在[Cu(imda)(phen)(H₂O)] (1)(H₂imda = 亚氨基二乙酸,phen = 1,10 - 菲咯啉)中,铜(II)周围的配位几何结构被描述为扭曲八面体,而在[Cu(imda)(5,6 - dmp)] (2)(5,6 - dmp = 5,6 - 二甲基 - 1,10 - 菲咯啉)和[Cu(imda)(dpq)] (3)(dpq = 二吡啶并[3,2 - d:2',3' - f] - 喹喔啉)中,其配位几何结构为三角双锥扭曲的正方锥,其中imda阴离子以面式方式与铜(II)配位。吸收光谱(Kb:1,0.60±0.04×10³;2,3.9±0.3×10³;3,1.7±0.5×10⁴ M⁻¹)、热变性研究(ΔTm:1,5.70±0.05;2,5.5±10;3,10.6±10℃)以及粘度测量表明,3与小牛胸腺DNA的相互作用比1和2更强。与1和3结合的DNA的相对粘度增加,而与2结合的DNA的相对粘度降低,这表明形成了扭结或弯曲以及/或者DNA从B构象转变为A构象,这通过DNA圆二色光谱中螺旋带强度的降低得以揭示。虽然1和3分别通过phen环和dpq的扩展平面环与DNA碱基堆积的部分插入作用与DNA结合,但配合物2参与沟槽结合。在抗坏血酸存在下,所有配合物都能使pBR322超螺旋DNA发生切割,切割效率顺序为3 > 1 > 2。dpq配合物最高的氧化DNA切割作用归因于其最高的Cu(II)/Cu(I)氧化还原电位。使用Distamycin进行的氧化切割研究表明,dpq配合物为小沟结合,但phen和5,6 - dmp配合物为大沟结合。此外,在没有光照或还原剂的情况下,所有配合物都表现出DNA水解切割活性,切割效率顺序为1 > 3 > 2。