Ren Qinghua, Balint-Kurti Gabriel G, Manby Frederick R, Artamonov Maxim, Ho Tak-San, Rabitz Herschel
School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.
J Chem Phys. 2006 Jan 7;124(1):14111. doi: 10.1063/1.2141616.
The optimal control of the vibrational excitation of the hydrogen molecule [Balint-Kurti et al., J. Chem. Phys. 122, 084110 (2005)] utilizing polarization forces is extended to three dimensions. The polarizability of the molecule, to first and higher orders, is accounted for using explicit ab initio calculations of the molecular electronic energy in the presence of an electric field. Optimal control theory is then used to design infrared laser pulses that selectively excite the molecule to preselected vibrational-rotational states. The amplitude of the electric field of the optimized pulses is restricted so that there is no significant ionization during the process, and a new frequency sifting method is used to simplify the frequency spectrum of the pulse. The frequency spectra of the optimized laser pulses for processes involving rotational excitation are more complex than those relating to processes involving only vibrational excitation.
利用极化力对氢分子振动激发的最优控制[巴林特 - 库尔蒂等人,《化学物理杂志》122, 084110 (2005)]被扩展到三维。分子的极化率,包括一阶及更高阶极化率,通过在电场存在下对分子电子能量进行明确的从头算来考虑。然后使用最优控制理论设计红外激光脉冲,以将分子选择性地激发到预选的振转态。优化脉冲电场的幅度受到限制,以便在该过程中不会发生显著的电离,并且使用一种新的频率筛选方法来简化脉冲的频谱。涉及转动激发过程的优化激光脉冲的频谱比仅涉及振动激发过程的频谱更复杂。