Suppr超能文献

通过计算建模和定点诱变对人微粒体前列腺素E合酶-1进行结构和功能表征

Structural and functional characterization of human microsomal prostaglandin E synthase-1 by computational modeling and site-directed mutagenesis.

作者信息

Huang Xiaoqin, Yan Weili, Gao Daquan, Tong Min, Tai Hsin-Hsiung, Zhan Chang-Guo

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536, USA.

出版信息

Bioorg Med Chem. 2006 May 15;14(10):3553-62. doi: 10.1016/j.bmc.2006.01.010. Epub 2006 Jan 24.

Abstract

Microsomal prostaglandin (PG) E synthase-1 (mPGES-1) has recently been recognized as a novel, promising drug target for inflammation-related diseases. Functional and pathological studies on this enzyme further stimulate to understand its structure and the structure-function relationships. Using an approach of the combined structure prediction, molecular docking, site-directed mutagenesis, and enzymatic activity assay, we have developed the first three-dimensional (3D) model of the substrate-binding domain (SBD) of mPGES-1 and its binding with substrates prostaglandin H2 (PGH2) and glutathione (GSH). In light of the 3D model, key amino acid residues have been identified for the substrate binding and the obtained experimental activity data have confirmed the computationally determined substrate-enzyme binding mode. Both the computational and experimental results show that Y130 plays a vital role in the binding with PGH2 and, probably, in the catalytic reaction process. R110 and T114 interact intensively with the carboxyl tail of PGH2, whereas Q36 and Q134 only enhance the PGH2-binding affinity. The modeled binding structure indicates that substrate PGH2 interacts with GSH through hydrogen binding between the peroxy group of PGH2 and the -SH group of GSH. The -SH group of GSH is expected to attack the peroxy group of PGH2, initializing the catalytic reaction transforming PGH2 to prostaglandin E2 (PGE2). The overall agreement between the calculated and experimental results demonstrates that the predicted 3D model could be valuable in future rational design of potent inhibitors of mPGES-1 as the next-generation inflammation-related therapeutic.

摘要

微粒体前列腺素(PG)E合酶-1(mPGES-1)最近被认为是一种针对炎症相关疾病的新型、有前景的药物靶点。对该酶的功能和病理学研究进一步促使人们去了解其结构以及结构与功能的关系。通过结合结构预测、分子对接、定点诱变和酶活性测定的方法,我们构建了mPGES-1底物结合结构域(SBD)的首个三维(3D)模型,以及它与底物前列腺素H2(PGH2)和谷胱甘肽(GSH)的结合模型。根据该3D模型,已确定了与底物结合的关键氨基酸残基,并且获得的实验活性数据证实了通过计算确定的底物-酶结合模式。计算和实验结果均表明,Y130在与PGH2的结合以及可能在催化反应过程中起着至关重要的作用。R110和T114与PGH2的羧基尾部强烈相互作用,而Q36和Q134仅增强了PGH2的结合亲和力。模拟的结合结构表明,底物PGH2通过PGH2的过氧基团与GSH的-SH基团之间的氢键与GSH相互作用。预计GSH的-SH基团会攻击PGH2的过氧基团从而引发将PGH2转化为前列腺素E2(PGE2)的催化反应。计算结果与实验结果的总体一致性表明,所预测的3D模型对于未来合理设计作为下一代炎症相关治疗药物的mPGES-1强效抑制剂可能具有重要价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验