Bardají Manuel, Calhorda Maria José, Costa Paulo J, Jones Peter G, Laguna Antonio, Reyes Pérez M, Villacampa M D
Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47005 Valladolid, Spain.
Inorg Chem. 2006 Feb 6;45(3):1059-68. doi: 10.1021/ic051168u.
The gold(I) thiolate complexes [Au(2-SC6H4NH2)(PPh3)] (1), [PPN][Au(2-SC6H4NH2)2] (2) (PPN = PPh3=N=PPh3), and [{Au(2-SC6H4NH2)}2(mu-dppm)] (3) (dppm = PPh2CH2PPh2) have been prepared by reaction of acetylacetonato gold(I) precursors with 2-aminobenzenethiol in the appropriate molar ratio. All products are intensely photoluminescent at 77 K. The molecular structure of the dinuclear derivative 3 displays a gold-gold intramolecular contact of 3.1346(4) A. Further reaction with the organometallic gold(III) complex [Au(C6F5)3(tht)] affords dinuclear or tetranuclear mixed gold(I)-gold(III) derivatives with a thiolate bridge, namely, [(AuPPh3){Au(C6F5)3}(mu2-2-SC6H4NH2)] (4) and [(C6F5)3Au(mu2-2-SC6H4NH2)(AudppmAu)(mu2-2-SC(6)H4NH2)Au(C6F5)3] (5). X-ray diffraction studies of the latter show a shortening of the intramolecular gold(I)-gold(I) contact [2.9353(7) or 2.9332(7) A for a second independent molecule], and short gold(I)-gold(III) distances of 3.2812(7) and 3.3822(7) A [or 3.2923(7) and 3.4052(7) A] are also displayed. Despite the gold-gold interactions, the mixed derivatives are nonemissive compounds. Therefore, the complexes were studied by DFT methods. The HOMOs and LUMOs for gold(I) derivatives 1 and 3 are mainly centered on the thiolate and phosphine (or the second thiolate for complex 2), respectively, with some gold contributions, whereas the LUMO for derivative 4 is more centered on the gold(III) fragment. TD-DFT results show a good agreement with the experimental UV-vis absorption and excitation spectra. The excitations can be assigned as a S --> Au-P charge transfer with some mixture of LLCT for derivative 1, an LLCT mixed with ILCT for derivative 2, and a S --> Au...Au-P charge transfer with LLCT and MC for derivative 3. An LMCT (thiolate --> Au(III) mixed with thiolate --> Au-P) excitation was found for derivative 4. The differing nature of the excited states [participation of the gold(III) fragment and the small contribution of sulfur] is proposed to be responsible for quenching the luminescence.
通过乙酰丙酮金(I)前体与2-氨基苯硫酚以适当的摩尔比反应,制备了硫醇金(I)配合物[Au(2-SC6H4NH2)(PPh3)](1)、[PPN][Au(2-SC6H4NH2)2](2)(PPN = PPh3=N=PPh3)和[{Au(2-SC6H4NH2)}2(μ-dppm)](3)(dppm = PPh2CH2PPh2)。所有产物在77 K时都有强烈的光致发光。双核衍生物3的分子结构显示金-金分子内接触距离为3.1346(4) Å。与有机金属金(III)配合物[Au(C6F5)3(tht)]进一步反应,得到具有硫醇盐桥的双核或四核金(I)-金(III)混合衍生物,即[(AuPPh3){Au(C6F5)3}(μ2-2-SC6H4NH2)](4)和[(C6F5)3Au(μ2-2-SC6H4NH2)(AudppmAu)(μ2-2-SC(6)H4NH2)Au(C6F5)3](5)。对后者的X射线衍射研究表明,分子内金(I)-金(I)接触距离缩短[第二个独立分子为2.9353(7) 或2.9332(7) Å],同时也显示出短的金(I)-金(III)距离为3.2812(7) 和3.3822(7) Å [或3.2923(7) 和3.4052(7) Å]。尽管存在金-金相互作用,但混合衍生物是非发光化合物。因此,采用密度泛函理论(DFT)方法对这些配合物进行了研究。金(I)衍生物1和3的最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)分别主要集中在硫醇盐和膦上(对于配合物2则是第二个硫醇盐),有一些金的贡献,而衍生物4的LUMO更集中在金(III)片段上。含时密度泛函理论(TD-DFT)结果与实验紫外-可见吸收光谱和激发光谱吻合良好。对于衍生物1,激发可归为S→Au-P电荷转移并伴有一些配体间长程电荷转移(LLCT);对于衍生物2,是LLCT与分子内电荷转移(ILCT)混合;对于衍生物3,是S→Au...Au-P电荷转移并伴有LLCT和金属中心激发(MC)。对于衍生物4,发现了一种配体到金属的电荷转移(LMCT)(硫醇盐→Au(III) 并伴有硫醇盐→Au-P)激发。激发态性质的不同[金(III)片段的参与和硫的贡献较小]被认为是导致发光猝灭的原因。