Fetisova Z G, Mauring K
A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia.
FEBS Lett. 1992 Aug 3;307(3):371-4. doi: 10.1016/0014-5793(92)80715-s.
Spectral hole burning has been used to prove experimentally the existence in natural antenna of one of the predicted structural optimizing factors--antenna pigment oligomerization [J. Theor. Biol. 140 (1989) 167]--ensuring high efficiency of excitation energy transfer from antenna to reaction center. This point has been examined for the chlorosomal antenna of green bacterium Chloroflexus aurantiacus by hole burning in fluorescence excitation and emission spectra of intact cells at 1.8 K. The persistent hole spectra have been found to be consistent with a strongly exciton-coupled bacteriochlorophyll c (BChl c) chromophore system. The lowest exciton state of BChl c oligomers has been directly detected and separated as the lowest energy inhomogeneously broadened band (FWHM approximately 90 cm-1, position of maximum, at approximately 752 nm) from the near-infrared BChl c band (FWHM approximately 350 cm-1, position of maximum, at approximately 742 nm) of 1.8 K excitation spectrum.
光谱烧孔已被用于通过实验证明天然天线中预测的结构优化因素之一——天线色素寡聚化[《理论生物学杂志》140 (1989) 167]的存在,该因素确保了激发能从天线到反应中心的高效转移。通过在1.8 K下完整细胞的荧光激发和发射光谱中的烧孔,对橙色绿弯菌的叶绿体天线进行了这方面的研究。已发现持续的烧孔光谱与强激子耦合的细菌叶绿素c(BChl c)发色团系统一致。BChl c寡聚体的最低激子态已被直接检测到,并作为最低能量非均匀展宽带(半高宽约90 cm-1,最大值位置在约752 nm)从1.8 K激发光谱的近红外BChl c带(半高宽约350 cm-1,最大值位置在约742 nm)中分离出来。