Deubel Dirk V
ETH Zurich, USI Campus, Computational Science, D-CHAB, 6900 Lugano, Switzerland.
J Am Chem Soc. 2006 Feb 8;128(5):1654-63. doi: 10.1021/ja055741k.
The mechanism of the formation of dinuclear platinum(II) mu-hydroxo complexes from cisplatin hydrolysis products, their interconversion, decomposition, and reactions with biomolecules has been explored using a combined DFT/CDM approach. All activation barriers for the formation of cis-{Pt(NH(3))(2)(X)}-(mu-OH)-cis-{Pt(NH(3))(2)(Y)}()(+) (X, Y = Cl, OH(2), OH) via nucleophilic attack of a hydroxo complex on an aqua complex are lower than the activation barriers for cisplatin hydrolysis. Considering therapeutic Pt(II) concentrations in tumors, however, only the reaction between two molecules of cis-Pt(NH(3))(2)(OH(2))(OH) (E) yielding cis-{Pt(NH(3))(2)(OH(2))}-(mu-OH)-cis-{Pt(NH(3))(2)(OH)} (5) remains kinetically superior to cisplatin hydrolysis. 5 is strongly stabilized by intramolecular hydrogen bonding between the terminal aqua and hydroxo ligands, resulting in an unusually high pK(a) of 5 and a low pK(a) of its conjugate acid. Unimolecular cyclization of 5 yields the dimers cis-{Pt(NH(3))(2)}(mu-OH)(2+) (7a with antiperiplanar OH groups and 7b with synperiplanar OH groups). The electronic structure of several diplatinum(II) complexes has been analyzed to clarify whether there are metal-metal interactions. The overall reactivity to guanine (Gua) and dimethyl sulfide (Met, representing the thioether functional group of methionine) increases in the order 5 < 7a approximately 7b < mononuclear complexes, whereas the kinetic selectivity to Gua relative to Met increases in the order 7a approximately 5 < 7b approximately monocationic mononuclear complexes < dicationic mononuclear complex. The results of this work (i) help assess whether dinuclear metabolites play a role in cisplatin chemotherapy, (ii) elucidate the toxicity and pharmacological inactivity of cis-{Pt(NH(3))(2)}(mu-OH)(2+), and (iii) suggest future investigations of dinuclear anticancer complexes that contain one mu-hydroxo ligand.
采用密度泛函理论(DFT)/连续介质模型(CDM)相结合的方法,研究了顺铂水解产物形成双核铂(II)μ-羟基配合物的机制、它们的相互转化、分解以及与生物分子的反应。通过羟基配合物对水合配合物的亲核进攻形成[顺式-{Pt(NH₃)₂(X)}-(μ-OH)-顺式-{Pt(NH₃)₂(Y)}]ⁿ⁺(X、Y = Cl、OH₂、OH)的所有活化能垒均低于顺铂水解的活化能垒。然而,考虑到肿瘤中的治疗性铂(II)浓度,只有顺式-[Pt(NH₃)₂(OH₂)(OH)]⁺(E)的两个分子之间反应生成[顺式-{Pt(NH₃)₂(OH₂)}-(μ-OH)-顺式-{Pt(NH₃)₂(OH)}]²⁺(5)在动力学上仍优于顺铂水解。5通过末端水合配体和羟基配体之间的分子内氢键得到强烈稳定,导致其pKa异常高,而其共轭酸的pKa较低。5的单分子环化产生二聚体[顺式-{Pt(NH₃)₂}(μ-OH)]₂²⁺(7a的OH基团为反式共平面,7b的OH基团为顺式共平面)。分析了几种二铂(II)配合物的电子结构,以阐明是否存在金属-金属相互作用。对鸟嘌呤(Gua)和二甲基硫醚(Met,代表甲硫氨酸的硫醚官能团)的总体反应活性按5 < 7a ≈ 7b < 单核配合物的顺序增加,而对Gua相对于Met的动力学选择性按7a ≈ 5 < 7b ≈ 单阳离子单核配合物 < 双阳离子单核配合物的顺序增加。这项工作的结果(i)有助于评估双核代谢物在顺铂化疗中是否起作用,(ii)阐明[顺式-{Pt(NH₃)₂}(μ-OH)]₂²⁺的毒性和药理惰性,(iii)建议对含有一个μ-羟基配体的双核抗癌配合物进行进一步研究。