Suppr超能文献

环丙烯酮脱羰反应机理。密度泛函理论与瞬态光谱研究。

Mechanism of the cyclopropenone decarbonylation reaction. A density functional theory and transient spectroscopy study.

作者信息

Poloukhtine Andrei, Popik Vladimir V

机构信息

Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.

出版信息

J Phys Chem A. 2006 Feb 9;110(5):1749-57. doi: 10.1021/jp0563641.

Abstract

The density functional theory analysis predicts that the thermal decarbonylation of cyclopropenones proceeds by the sequential and regioselective cleavage of both single bonds in a three-membered ring. The initial ring-opening process results in the formation of a reactive zwitterionic intermediate 6, which is separated from the free alkyne and carbon monoxide by a very low energy barrier. Femtosecond pump-probe transient absorption spectroscopy experiments showed that light-induced decarbonylation is also a stepwise process but apparently proceeds on the excited-state surface. The lifetime of the intermediate in the photodecarbonylation reaction is very short and is dependent on substitution and solvent polarity. Thus, bis-p-anisyl-substituted species decays with tau = 0.6 ps, bis-alpha-naphthyl-substituted intermediate has a lifetime of tau = 11 ps, while the bis(2-methoxy-1-naphthyl)-substituted analogue survives for 83 ps in chloroform and for 168 ps in argon-saturated methanol. The loss of carbon monoxide from these intermediates results in the formation of corresponding acetylenes in an electronically ground state. The addition of triplet quenchers does not affect the dynamics or outcome of the reaction.

摘要

密度泛函理论分析预测,环丙烯酮的热脱羰反应是通过三元环中两个单键的顺序和区域选择性断裂进行的。最初的开环过程导致形成一个反应性两性离子中间体6,它与游离炔烃和一氧化碳之间的能垒非常低。飞秒泵浦-探测瞬态吸收光谱实验表明,光诱导脱羰反应也是一个逐步过程,但显然是在激发态表面进行的。光脱羰反应中中间体的寿命非常短,并且取决于取代基和溶剂极性。因此,双对甲氧基取代的物种的衰减时间τ = 0.6皮秒,双α-萘基取代的中间体的寿命为τ = 11皮秒,而双(2-甲氧基-1-萘基)取代的类似物在氯仿中存活83皮秒,在氩饱和甲醇中存活168皮秒。这些中间体失去一氧化碳会导致形成处于电子基态的相应乙炔。添加三线态猝灭剂不会影响反应的动力学或结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验