Suppr超能文献

在分子动力学模拟中模仿GroEL的作用:应用于蛋白质结构的优化

Mimicking the action of GroEL in molecular dynamics simulations: application to the refinement of protein structures.

作者信息

Fan Hao, Mark Alan E

机构信息

Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Department of Biophysical Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.

出版信息

Protein Sci. 2006 Mar;15(3):441-8. doi: 10.1110/ps.051721006. Epub 2006 Feb 1.

Abstract

Bacterial chaperonin, GroEL, together with its co-chaperonin, GroES, facilitates the folding of a variety of polypeptides. Experiments suggest that GroEL stimulates protein folding by multiple cycles of binding and release. Misfolded proteins first bind to an exposed hydrophobic surface on GroEL. GroES then encapsulates the substrate and triggers its release into the central cavity of the GroEL/ES complex for folding. In this work, we investigate the possibility to facilitate protein folding in molecular dynamics simulations by mimicking the effects of GroEL/ES namely, repeated binding and release, together with spatial confinement. During the binding stage, the (metastable) partially folded proteins are allowed to attach spontaneously to a hydrophobic surface within the simulation box. This destabilizes the structures, which are then transferred into a spatially confined cavity for folding. The approach has been tested by attempting to refine protein structural models generated using the ROSETTA procedure for ab initio structure prediction. Dramatic improvements in regard to the deviation of protein models from the corresponding experimental structures were observed. The results suggest that the primary effects of the GroEL/ES system can be mimicked in a simple coarse-grained manner and be used to facilitate protein folding in molecular dynamics simulations. Furthermore, the results support the assumption that the spatial confinement in GroEL/ES assists the folding of encapsulated proteins.

摘要

细菌伴侣蛋白GroEL与其共伴侣蛋白GroES一起,促进多种多肽的折叠。实验表明,GroEL通过多个结合和释放循环刺激蛋白质折叠。错误折叠的蛋白质首先与GroEL上暴露的疏水表面结合。然后GroES包裹底物并触发其释放到GroEL/ES复合物的中央腔中进行折叠。在这项工作中,我们研究了通过模拟GroEL/ES的作用,即重复的结合和释放以及空间限制,在分子动力学模拟中促进蛋白质折叠的可能性。在结合阶段,允许(亚稳态)部分折叠的蛋白质自发附着到模拟盒内的疏水表面。这会使结构不稳定,然后将其转移到空间受限的腔中进行折叠。该方法已通过尝试优化使用ROSETTA从头预测结构的程序生成的蛋白质结构模型进行了测试。观察到蛋白质模型与相应实验结构的偏差有显著改善。结果表明,GroEL/ES系统的主要作用可以以简单的粗粒度方式模拟,并用于在分子动力学模拟中促进蛋白质折叠。此外,结果支持了GroEL/ES中的空间限制有助于包裹的蛋白质折叠的假设。

相似文献

1
Mimicking the action of GroEL in molecular dynamics simulations: application to the refinement of protein structures.
Protein Sci. 2006 Mar;15(3):441-8. doi: 10.1110/ps.051721006. Epub 2006 Feb 1.
3
Exploring the kinetic requirements for enhancement of protein folding rates in the GroEL cavity.
J Mol Biol. 1999 Apr 2;287(3):627-44. doi: 10.1006/jmbi.1999.2591.
4
Protein folding assisted by the GroEL/GroES chaperonin system.
Biochemistry (Mosc). 1998 Apr;63(4):374-81.
5
GroEL mediates protein folding with a two successive timer mechanism.
Mol Cell. 2004 May 21;14(4):423-34. doi: 10.1016/s1097-2765(04)00261-8.
6
Action of the chaperonin GroEL/ES on a non-native substrate observed with single-molecule FRET.
J Mol Biol. 2010 Aug 27;401(4):553-63. doi: 10.1016/j.jmb.2010.06.050. Epub 2010 Jun 30.
7
Retardation of Folding Rates of Substrate Proteins in the Nanocage of GroEL.
Biochemistry. 2021 Feb 16;60(6):460-464. doi: 10.1021/acs.biochem.0c00903. Epub 2021 Jan 19.
8
Factors governing the substrate recognition by GroEL chaperone: a sequence correlation approach.
Cell Stress Chaperones. 2005 Spring;10(1):24-36. doi: 10.1379/csc-64r1.1.
9
The GroEL-GroES Chaperonin Machine: A Nano-Cage for Protein Folding.
Trends Biochem Sci. 2016 Jan;41(1):62-76. doi: 10.1016/j.tibs.2015.07.009. Epub 2015 Sep 25.
10
Active cage mechanism of chaperonin-assisted protein folding demonstrated at single-molecule level.
J Mol Biol. 2014 Jul 29;426(15):2739-54. doi: 10.1016/j.jmb.2014.04.018. Epub 2014 May 6.

引用本文的文献

1
Role of nonspecific interactions in molecular chaperones through model-based bioinformatics.
Biophys J. 2012 Dec 19;103(12):2484-91. doi: 10.1016/j.bpj.2012.10.040. Epub 2012 Dec 18.
2
Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin.
J R Soc Interface. 2008 Dec 6;5(29):1391-408. doi: 10.1098/rsif.2008.0185.

本文引用的文献

1
Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems.
J Comput Chem. 1999 Jun;20(8):786-798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B.
2
Accelerated folding in the weak hydrophobic environment of a chaperonin cavity: creation of an alternate fast folding pathway.
Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13192-7. doi: 10.1073/pnas.0400720101. Epub 2004 Aug 26.
4
5
Domain motions in GroEL upon binding of an oligopeptide.
J Mol Biol. 2003 Nov 28;334(3):489-99. doi: 10.1016/j.jmb.2003.09.074.
7
How protein thermodynamics and folding mechanisms are altered by the chaperonin cage: molecular simulations.
Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11367-72. doi: 10.1073/pnas.1831920100. Epub 2003 Aug 28.
10
Annealing function of GroEL: structural and bioinformatic analysis.
Biophys Chem. 2003;100(1-3):453-67. doi: 10.1016/s0301-4622(02)00298-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验