Suppr超能文献

一种增强型猪弹性蛋白复合血管支架的研发。

Development of a reinforced porcine elastin composite vascular scaffold.

作者信息

Hinds Monica T, Rowe Rebecca C, Ren Zhen, Teach Jeffrey, Wu Ping-Cheng, Kirkpatrick Sean J, Breneman Kathryn D, Gregory Kenton W, Courtman David W

机构信息

Department of Biomedical Engineering, Oregon Health and Science University, Portland, 97006, USA.

出版信息

J Biomed Mater Res A. 2006 Jun 1;77(3):458-69. doi: 10.1002/jbm.a.30571.

Abstract

Elastin, a principal structural component of native arteries, has distinct biological and mechanical advantages when used as a biomaterial; however, its low ultimate tensile strength has limited its use as an arterial conduit. We have developed a scaffold, consisting of a purified elastin tubular conduit strengthened with fibrin bonded layers of acellular small intestinal submucosa (aSIS) for potential use as a small diameter vascular graft. The addition of aSIS increased the ultimate tensile strength of the elastin conduits nine-fold. Burst pressures for the elastin composite vascular scaffold (1,396 +/- 309 mmHg) were significantly higher than pure elastin conduits (162 +/- 36 mmHg) and comparable to native saphenous veins. The average suture pullout strength of the elastin composite vascular scaffolds was 14.612 +/- 3.677 N, significantly higher than the pure elastin conduit (0.402 +/- 0.098 N), but comparable to native porcine carotid arteries (13.994 +/- 4.344 N). Cyclic circumferential strain testing indicated that the composite scaffolds were capable of withstanding physiological loading conditions for at least 83 h. Implantation of the elastin composites as carotid interposition grafts in swine demonstrated its superiority to clinically acceptable ePTFE with significantly longer average patency times of 5.23 h compared to 4.15 h. We have developed a biologically based elastin scaffold with suitable mechanical properties and low thrombogenicity for in vivo implantation, and with the potential for cellular repopulation and host integration reestablishing an appropriate elastic artery.

摘要

弹性蛋白是天然动脉的主要结构成分,用作生物材料时具有独特的生物学和力学优势;然而,其较低的极限拉伸强度限制了它作为动脉导管的应用。我们开发了一种支架,它由纯化的弹性蛋白管状导管组成,并通过纤维蛋白粘结的无细胞小肠黏膜下层(aSIS)层进行强化,有望用作小口径血管移植物。添加aSIS使弹性蛋白导管的极限拉伸强度提高了九倍。弹性蛋白复合血管支架的爆破压力(1396±309 mmHg)显著高于纯弹性蛋白导管(162±36 mmHg),与天然大隐静脉相当。弹性蛋白复合血管支架的平均缝线拔出强度为14.612±3.677 N,显著高于纯弹性蛋白导管(0.402±0.098 N),但与天然猪颈动脉(13.994±4.344 N)相当。循环周向应变测试表明,复合支架能够承受至少83小时的生理负荷条件。将弹性蛋白复合材料作为颈动脉间置移植物植入猪体内,结果显示其优于临床上可接受的ePTFE,平均通畅时间明显更长,分别为5.23小时和4.15小时。我们开发了一种基于生物学的弹性蛋白支架,具有适合体内植入的力学性能和低血栓形成性,并且具有细胞再填充和宿主整合的潜力,可重新建立合适的弹性动脉。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验