Wirth Mary J
Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA.
Appl Spectrosc. 2006 Jan;60(1):89-94. doi: 10.1366/000370206775382794.
Fourier transformation is evaluated as a means of improving precision in the analysis of fluorescence-recovery-after-photobleaching (FRAP) data. Simulations of FRAP data of 2m points, where m is an integer, are Fourier transformed to obtain the frequency domain data. Analogous to frequency domain techniques in nanosecond spectroscopy, frequency domain analysis of FRAP data is shown to provide more precise results. For a single exponential decay acquired over a time window of five decay constants, frequency domain analysis increases the precision by six fold without requiring that any more data be acquired. For a double exponential decay with decay constants that differ by a factor of two and noise of 5% relative standard deviation, time domain analysis is unable to distinguish this from a single exponential decay (chi2=1.1), whereas frequency domain analysis reveals that it does not fit to a single exponential decay (chi2=2.5). For a double exponential decay with five-fold differing decay constants, improved precision is obtained in the frequency domain for both of the decay constants, as well as the fractional amount of each. In contrast to nanosecond spectroscopy, the FRAP analysis described here combines the higher precision of the frequency domain with the direct observation in the time domain to facilitate the assessment of artifacts.
傅里叶变换被评估为一种提高光漂白后荧光恢复(FRAP)数据分析精度的方法。对2m个点的FRAP数据进行模拟(其中m为整数),对其进行傅里叶变换以获得频域数据。与纳秒光谱中的频域技术类似,FRAP数据的频域分析显示能提供更精确的结果。对于在五个衰减常数的时间窗口内获取的单指数衰减,频域分析将精度提高了六倍,且无需获取更多数据。对于具有相差两倍的衰减常数且相对标准偏差为5%噪声的双指数衰减,时域分析无法将其与单指数衰减区分开来(卡方值=1.1),而频域分析表明它不符合单指数衰减(卡方值=2.5)。对于具有相差五倍的衰减常数的双指数衰减,在频域中两个衰减常数以及每个衰减常数的分数含量都获得了更高的精度。与纳秒光谱不同,这里描述的FRAP分析将频域的更高精度与时域的直接观察相结合,以方便对伪影进行评估。