Frech Christian M, Blacque Olivier, Schmalle Helmut W, Berke Heinz, Adlhart Christian, Chen Peter
Department of Inorganic Chemistry, University of Zürich, 8057 Zürich, Switzerland.
Chemistry. 2006 Apr 12;12(12):3325-38. doi: 10.1002/chem.200501025.
The reaction of [Re(H)(NO)2(PR3)2] complexes (1 a: R = PCy3; 1 b: R = PiPr3) with [H(OEt2)2][BAr(F)4] ([BAr(F)4] = tetrakis{3,5-bis(trifluoromethyl)phenyl}borate) in benzene at room temperature gave the corresponding cations [Re(NO)2(PR3)2][BAr(F)4] (2 a and 2 b). The addition of phenyldiazomethane to benzene solutions of 2 a and 2 b afforded the moderately stable cationic rhenium(I)-benzylidene-dinitrosyl-bis(trialkyl)phosphine complexes 3 a and 3 b as [BAr(F)4]- salts in good yields. The complexes 2 a and 2 b catalyze the ring-opening metathesis polymerization (ROMP) of highly strained nonfunctionalized cyclic olefins to give polymers with relatively high polydispersity indices, high molecular weights and over 80 % Z configuration of the double bonds in the chain backbone. However, these complexes do not show metathesis activity with acyclic olefins. The benzylidene derivatives 3 a and 3 b are almost inactive in ROMP catalysis with norbornene and in olefin metathesis. NMR experiments gave the first hints of the initial formation of carbene complexes from [Re(NO)2(PR3)2][BAr(F)4] (2 a and 2 b) and norbornene. In a detailed mechanistic study ESI-MS/MS measurements provided further evidence that the carbene formation is initiated by a unique reaction sequence where the cleavage of the strained olefinic bond starts with phosphine migration forming a cyclic ylide-carbene complex, capable of undergoing metathesis with alternating rhenacyclobutane formation and cycloreversion reactions ("ylide" route). However, even at an early stage the ROMP propagation route is expected to merge into an "iminate" route by attack by the ylide function on one of the N(NO) atoms followed by phosphine oxide elimination. The formation of phosphine oxide was confirmed by NMR spectroscopy. The proposed mechanism is supported further by detailed DFT calculations.
[Re(H)(NO)₂(PR₃)₂]配合物(1a:R = PCy₃;1b:R = PiPr₃)与[H(OEt₂)₂][BAr(F)₄]([BAr(F)₄] = 四{3,5 - 双(三氟甲基)苯基}硼酸酯)在室温下于苯中反应,得到相应的阳离子[Re(NO)₂(PR₃)₂][BAr(F)₄](2a和2b)。向2a和2b的苯溶液中加入苯基重氮甲烷,以良好的产率得到中等稳定的阳离子铼(I)-亚苄基-二亚硝基-双(三烷基)膦配合物3a和3b,为[BAr(F)₄]盐。配合物2a和2b催化高度张力的非官能化环烯烃的开环易位聚合(ROMP),得到具有相对高多分散指数、高分子量且链主链中双键的Z构型超过80%的聚合物。然而,这些配合物对非环烯烃不显示易位活性。亚苄基衍生物3a和3b在降冰片烯的ROMP催化和烯烃易位反应中几乎无活性。核磁共振实验首次暗示了[Re(NO)₂(PR₃)₂][BAr(F)₄](2a和2b)与降冰片烯最初形成卡宾配合物。在一项详细的机理研究中,电喷雾串联质谱(ESI-MS/MS)测量提供了进一步的证据,表明卡宾的形成是由一个独特的反应序列引发的,其中张力烯烃键的断裂始于膦迁移,形成一个环状叶立德-卡宾配合物,能够通过交替形成铼环丁烷和环化逆转反应进行易位(“叶立德”途径)。然而,即使在早期阶段,ROMP增长途径预计也会通过叶立德官能团攻击其中一个N(NO)原子,随后消除氧化膦,合并为“亚胺”途径。氧化膦的形成通过核磁共振光谱得到证实。详细的密度泛函理论(DFT)计算进一步支持了所提出的机理。