Chen G, Pettet G, Pearcy M, McElwain D L S
Applied Mathematics and Advanced Computation Program, School of Mathematical Sciences, Queensland University of Technology, Qld 4001, Australia.
Med Eng Phys. 2007 Jan;29(1):134-9. doi: 10.1016/j.medengphy.2005.12.008. Epub 2006 Feb 3.
This paper addresses the "checkerboard" phenomenon, which occurs in numerical simulation of bone remodelling. It attempts to answer the question: is an element-based approach suitable for bone remodelling? Two different numerical approaches, the element-based and the node-based finite element analyses, are implemented using ABAQUS. A comparison of the numerical results demonstrates that the checkerboard phenomenon occurs only in the element-based finite element analyses; the node-based approach eradicates the checkerboard phenomenon but requires much more computational time. This study shows that it is essential to enforce the continuity of bone density across the element boundaries. As the node-based approach requires much more computational time, the first-order Adams-Bashforth integration method is introduced to reduce computational cost. The comparisons with Euler's forward method demonstrate that the first-order Adams-Bashforth method indeed enhances accuracy and reduces computational cost. This study concludes that the node-based approach with the first-order Adams-Bashforth integration scheme is to be recommended for computational bone remodelling studies.
本文探讨了在骨重塑数值模拟中出现的“棋盘格”现象。它试图回答以下问题:基于单元的方法是否适用于骨重塑?使用ABAQUS实现了两种不同的数值方法,即基于单元的有限元分析和基于节点的有限元分析。数值结果比较表明,“棋盘格”现象仅出现在基于单元的有限元分析中;基于节点的方法消除了“棋盘格”现象,但需要更多的计算时间。本研究表明,必须确保骨密度在单元边界上的连续性。由于基于节点的方法需要更多的计算时间,因此引入了一阶亚当斯-巴什福思积分方法以降低计算成本。与欧拉向前方法的比较表明,一阶亚当斯-巴什福思方法确实提高了精度并降低了计算成本。本研究得出结论,对于计算骨重塑研究,建议采用具有一阶亚当斯-巴什福思积分方案的基于节点的方法。