Wang Kang, Xia Xing-Hua
Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093, China.
J Chromatogr A. 2006 Mar 31;1110(1-2):222-6. doi: 10.1016/j.chroma.2006.01.056. Epub 2006 Feb 3.
The end of separation channel in a microchip was electrochemically mapped using the feedback imaging mode of scanning electrochemical microscopy (SECM). This method provides a convenient way for microchannel-electrode alignment in microchip capillary electrophoresis. Influence of electrode-to-channel positions on separation parameters in this capillary electrophoresis-electrochemical detection (CE-ED) was then investigated. For the trapezoid shaped microchannel, detection in the central area resulted in the best apparent separation efficiency and peak shape. In the electrode-to-channel distance ranging from 65 to 15mum, the limiting peak currents of dopamine increased with the decrease of the detection distance due to the limited diffusion and convection of the sample band. Results showed that radial position and axial distance of the detection electrode to microchannel was important for the improvement of separation parameters in CE amperometric detection.
利用扫描电化学显微镜(SECM)的反馈成像模式对微芯片中分离通道的末端进行了电化学测绘。该方法为微芯片毛细管电泳中的微通道 - 电极对准提供了一种便捷方式。随后研究了电极与通道位置对这种毛细管电泳 - 电化学检测(CE - ED)中分离参数的影响。对于梯形微通道,在中心区域进行检测可获得最佳的表观分离效率和峰形。在电极与通道距离为65至15μm的范围内,由于样品带的扩散和对流受限,多巴胺的极限峰电流随检测距离的减小而增加。结果表明,检测电极相对于微通道的径向位置和轴向距离对于改善CE安培检测中的分离参数很重要。