Millen Jennifer, MacLean Margaret R, Houslay Miles D
Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
Eur J Cell Biol. 2006 Jul;85(7):679-91. doi: 10.1016/j.ejcb.2006.01.006. Epub 2006 Feb 3.
Human pulmonary artery smooth muscle cells (hPASM cells) express PDE4A10, PDE4A11, PDE4B2, PDE4C and PDE4D5 isoforms. Hypoxia causes a transient up-regulation of PDE4B2 that reaches a maximum after 7 days and sustained up-regulation of PDE4A10/11 and PDE4D5 over 14 days in hypoxia. Seven days in hypoxia increases both intracellular cAMP levels, protein kinase A (PKA) activity and activated, phosphorylated extracellular signal regulated kinase (pERK) but does not alter either PKA isoform expression or total cAMP phosphodiesterase-4 (PDE4) activity or cAMP phosphodiesterase-3 (PDE3) activity. Both the cyclooxygenase inhibitor, indomethacin and the ERK inhibitors, UO126 and PD980589 reverse the hypoxia-induced increase in intracellular cAMP levels back to those seen in normoxic hPASM cells. Challenge of normoxic hPASM cells with prostaglandin E(2) (PGE(2)) elevates cAMP to levels comparable to those seen in hypoxic cells but fails to increase intracellular cAMP levels in hypoxic hPASM cells. The adenylyl cyclase activator, forskolin increases cAMP levels in both normoxic and hypoxic hPASM cells to comparable elevated levels. Challenge of hypoxic hPASM cells with indomethacin attenuates total PDE4 activity whilst challenge with UO126 increases total PDE4 activity. We propose that the hypoxia-induced activation of ERK initiates a phospholipase A(2)/COX-driven autocrine effect whereupon PGE(2) is generated, causing the activation of adenylyl cyclase and increase in intracellular cAMP. Despite the hypoxia-induced increases in the expression of PDE4A10/11, PDE4B2 and PDE4D5 and activation of certain of these long PDE4 isoforms through PKA phosphorylation, we suggest that the failure to see any overall increase in PDE4 activity is due to ERK-mediated phosphorylation and inhibition of particular PDE4 long isoforms. Such hypoxia-induced increase in expression of PDE4 isoforms known to interact with certain signalling scaffold proteins may result in alterations in compartmentalised cAMP signalling. The hypoxia-induced increase in cAMP may represent a compensatory protective mechanism against hypoxia-induced mitogens such as endothelin-1 and serotonin.
人肺动脉平滑肌细胞(hPASM细胞)表达磷酸二酯酶4A10、磷酸二酯酶4A11、磷酸二酯酶4B2、磷酸二酯酶4C和磷酸二酯酶4D5亚型。缺氧导致磷酸二酯酶4B2短暂上调,7天后达到最大值,且在缺氧14天内磷酸二酯酶4A10/11和磷酸二酯酶4D5持续上调。缺氧7天会增加细胞内cAMP水平、蛋白激酶A(PKA)活性以及活化的、磷酸化的细胞外信号调节激酶(pERK),但不会改变PKA亚型表达、总环磷酸腺苷磷酸二酯酶4(PDE4)活性或环磷酸腺苷磷酸二酯酶3(PDE3)活性。环氧化酶抑制剂吲哚美辛以及ERK抑制剂UO126和PD980589均可将缺氧诱导的细胞内cAMP水平升高逆转至常氧hPASM细胞中的水平。用前列腺素E2(PGE2)刺激常氧hPASM细胞可使cAMP升高至与缺氧细胞中相当的水平,但在缺氧hPASM细胞中未能增加细胞内cAMP水平。腺苷酸环化酶激活剂福斯可林可使常氧和缺氧hPASM细胞中的cAMP水平升高至相当的升高水平。用吲哚美辛刺激缺氧hPASM细胞会减弱总PDE4活性,而用UO126刺激则会增加总PDE4活性。我们提出缺氧诱导的ERK激活引发了磷脂酶A2/COX驱动的自分泌效应,从而产生PGE2,导致腺苷酸环化酶激活和细胞内cAMP增加。尽管缺氧诱导了磷酸二酯酶4A10/11、磷酸二酯酶4B2和磷酸二酯酶4D5的表达增加,并通过PKA磷酸化激活了某些这些长链PDE4亚型,但我们认为未观察到PDE4活性有任何总体增加是由于ERK介导的特定PDE4长链亚型的磷酸化和抑制。这种缺氧诱导的已知与某些信号支架蛋白相互作用的PDE4亚型表达增加可能导致分隔的cAMP信号传导改变。缺氧诱导的cAMP增加可能代表了一种针对缺氧诱导的有丝分裂原(如内皮素-1和5-羟色胺)的代偿性保护机制。