Suppr超能文献

结合使用模拟和分子热力学理论对胶束化进行建模。

Complementary use of simulations and molecular-thermodynamic theory to model micellization.

作者信息

Stephenson Brian C, Beers Kenneth, Blankschtein Daniel

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Langmuir. 2006 Feb 14;22(4):1500-13. doi: 10.1021/la052042c.

Abstract

Molecular-thermodynamic descriptions of micellization in aqueous media can be utilized to model the self-assembly of surfactants possessing relatively simple chemical structures, where it is possible to identify a priori what equilibrium position they will adopt in the resulting micellar aggregate. For such chemical structures, the portion of the surfactant molecule that is expected to be exposed to water upon aggregate self-assembly can be identified and used as an input to the molecular-thermodynamic description. Unfortunately, for many surfactants possessing more complex chemical structures, it is not clear a priori how they will orient themselves within a micellar aggregate. In this paper, we present a computational approach to identify what portions of a surfactant molecule are hydrated in a micellar environment through the use of molecular dynamics simulations of such molecules at an oil/water interface (modeling the micelle core/water interface). The local environment of each surfactant segment is determined by counting the number of contacts of each segment with the water and oil molecules. After identifying the hydrated and the unhydrated segments of the surfactant molecule, molecular-thermodynamic modeling can be performed to predict: (i) the free-energy change associated with forming a micellar aggregate, (ii) the critical micelle concentration (CMC), and (iii) the optimal shape and size of the micellar aggregate. The computer simulation results were found to be sensitive to the atomic charge parameters utilized during the simulation runs. Two different methods of assigning atomic charges were tested, and the computer simulation and molecular-thermodynamic modeling results obtained using both sets of atomic charges are presented and compared. The combined computer simulation/molecular-thermodynamic modeling approach presented here is validated first by implementing it in the case of anionic (sodium dodecyl sulfate, SDS), cationic (cetyltrimethylammonium bromide, CTAB), zwitterionic (dodecylphosphocholine, DPC), and nonionic (dodecyl poly(ethylene oxide), C12E8) surfactants possessing relatively simple chemical structures and verifying that good predictions of CMCs and micelle aggregation numbers are obtained. In the case of C12E8, the challenges and limitations associated with simulating a single, polymeric E8 moiety at the oil/water interface to model its behavior at the micelle/water interface are discussed. Subsequently, the combined modeling approach is implemented in the case of the anionic surfactant 3-hydroxy sulfonate (AOS) and of the nonionic surfactant decanoyl-n-methylglucamide (MEGA-10), which possess significantly more complex chemical structures. The good predictions obtained for these two surfactants indicate that the combined computer simulation/molecular-thermodynamic modeling approach presented here extends the range of applicability of molecular-thermodynamic theory to allow modeling of the micellization behavior of surfactants possessing more complex chemical structures.

摘要

水介质中胶束化的分子热力学描述可用于对具有相对简单化学结构的表面活性剂的自组装进行建模,在这种情况下,可以先验地确定它们在形成的胶束聚集体中会采取何种平衡位置。对于这类化学结构,可以确定表面活性剂分子在聚集体自组装后预期暴露于水的部分,并将其用作分子热力学描述的输入。不幸的是,对于许多具有更复杂化学结构的表面活性剂,事先并不清楚它们在胶束聚集体中会如何取向。在本文中,我们提出了一种计算方法,通过在油/水界面(模拟胶束核心/水界面)对这类分子进行分子动力学模拟,来确定表面活性剂分子在胶束环境中哪些部分是水合的。每个表面活性剂片段的局部环境通过计算每个片段与水分子和油分子的接触数来确定。在确定了表面活性剂分子的水合和非水合片段后,可以进行分子热力学建模来预测:(i)与形成胶束聚集体相关的自由能变化,(ii)临界胶束浓度(CMC),以及(iii)胶束聚集体的最佳形状和大小。发现计算机模拟结果对模拟运行期间使用的原子电荷参数敏感。测试了两种不同的分配原子电荷的方法,并给出并比较了使用两组原子电荷获得的计算机模拟和分子热力学建模结果。本文提出的计算机模拟/分子热力学建模相结合的方法首先通过在具有相对简单化学结构的阴离子(十二烷基硫酸钠,SDS)、阳离子(十六烷基三甲基溴化铵,CTAB)、两性离子(十二烷基磷酸胆碱,DPC)和非离子(十二烷基聚环氧乙烷,C12E8)表面活性剂的情况下实施该方法,并验证获得了对CMC和胶束聚集数的良好预测而得到验证。在C12E8的情况下,讨论了在油/水界面模拟单个聚合E8部分以模拟其在胶束/水界面行为时相关的挑战和局限性。随后,在具有明显更复杂化学结构的阴离子表面活性剂3-羟基磺酸盐(AOS)和非离子表面活性剂癸酰基-N-甲基葡糖酰胺(MEGA-10)的情况下实施了组合建模方法。对这两种表面活性剂获得的良好预测表明,本文提出的计算机模拟/分子热力学建模相结合的方法扩展了分子热力学理论的适用范围,以允许对具有更复杂化学结构的表面活性剂的胶束化行为进行建模。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验