Barnes J, Chambers I, Piper I, Citerio G, Contant C, Enblad P, Fiddes H, Howells T, Kiening K, Nilsson P, Yau Y H
Regional Medical Physics Department, Newcastle General Hospital, Newcastle upon Tyne, UK.
Acta Neurochir Suppl. 2005;95:39-41. doi: 10.1007/3-211-32318-x_9.
BrainIT is a multi centre, European project, to collect high quality continuous data from severely head injured patients using a previously defined [6] core data set. This includes minute-by-minute physiological data and simultaneous treatment and management information. It is crucial that the data is correctly collected and validated.
Minute-by-minute physiological monitoring data is collected from the bedside monitors. Demographic and clinical information, intensive care management and secondary insult management data, are collected using a handheld computer. Data is transferred from the handheld device to a local computer where it is reviewed and anonymised before being sent electronically, with the physiological data, to the central database in Glasgow. Automated computer tools highlight missing or ambiguous data. A request is then sent to the contributing centre where the data is amended and returned to Glasgow. Of the required data elements 20% are randomly selected for validation against original documentation along with the actual number of specific episodic events during a known period. This will determine accuracy and the percentage of missing data for each record.
Advances in patient care require an improved evidence base. For accurate, consistent and repeatable data collection, robust mechanisms are required which should enhance the reliability of clinical trials, assessment of management protocols and equipment evaluations.
BrainIT是一个欧洲多中心项目,旨在使用先前定义的[6]核心数据集,从重度颅脑损伤患者中收集高质量的连续数据。这包括逐分钟的生理数据以及同步的治疗和管理信息。正确收集和验证数据至关重要。
逐分钟的生理监测数据从床边监测仪收集。人口统计学和临床信息、重症监护管理和二次损伤管理数据,使用手持计算机收集。数据从手持设备传输到本地计算机,在那里进行审查和匿名处理,然后与生理数据一起以电子方式发送到格拉斯哥的中央数据库。自动化计算机工具会突出显示缺失或模糊的数据。然后会向提供数据的中心发送请求,在那里对数据进行修正并返回给格拉斯哥。从所需的数据元素中随机选择20%,与原始文档以及已知时间段内特定偶发事件的实际数量进行验证。这将确定每条记录的准确性和缺失数据的百分比。
患者护理的进步需要改进证据基础。为了进行准确、一致和可重复的数据收集,需要强大的机制,这将提高临床试验的可靠性、管理方案的评估和设备评估。