Suppr超能文献

利用宽带腔增强拉曼散射测定水性微滴的成分。

Determining the composition of aqueous microdroplets with broad-band cavity enhanced Raman scattering.

作者信息

Symes Rachel, Reid Jonathan P

机构信息

School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

出版信息

Phys Chem Chem Phys. 2006 Jan 14;8(2):293-302. doi: 10.1039/b510007k. Epub 2005 Oct 27.

Abstract

We demonstrate that broad-band cavity enhanced Raman scattering (CERS) can be used to determine the composition of binary alcohol-water aerosol droplets over a wide compositional range from 10% v/v to 90% v/v. In contrast to conventional CERS using narrow-band laser excitation, the excitation is provided by a broad-band Nd:YAG pumped dye laser. A change in the spontaneous spectrum resulting from the change of the linewidth of the excitation laser permits tuning of the sensitivity range over which the droplet composition can be determined by CERS. We demonstrate that this change in sensitivity can be estimated using a simulation of the change in the sensitivity to the species in spontaneous bulk phase measurements. We further show that the compositional calibration is independent of droplet radius in the range 33-56 microm. The compositional range over which CERS is sensitive can be controlled and optimised for any particular application by exploiting the dependence of the stimulated Raman scattering on the laser linewidth and wavelength. Thus, quantitative measurements of droplet composition can be made in situ with high accuracy, providing a valuable new tool for analysing aerosol composition.

摘要

我们证明,宽带腔增强拉曼散射(CERS)可用于确定二元醇 - 水气溶胶液滴在10% v/v至90% v/v的宽组成范围内的成分。与使用窄带激光激发的传统CERS不同,激发由宽带Nd:YAG泵浦染料激光器提供。激发激光线宽变化导致的自发光谱变化允许调整CERS可确定液滴成分的灵敏度范围。我们证明,这种灵敏度变化可以通过模拟自发体相测量中对物种的灵敏度变化来估计。我们进一步表明,成分校准在33 - 56微米范围内与液滴半径无关。通过利用受激拉曼散射对激光线宽和波长的依赖性,可以针对任何特定应用控制和优化CERS敏感的成分范围。因此,可以高精度地原位进行液滴成分的定量测量,为分析气溶胶成分提供了一种有价值的新工具。

相似文献

1
Determining the composition of aqueous microdroplets with broad-band cavity enhanced Raman scattering.
Phys Chem Chem Phys. 2006 Jan 14;8(2):293-302. doi: 10.1039/b510007k. Epub 2005 Oct 27.
5
Measurements and simulations of the near-surface composition of evaporating ethanol-water droplets.
Phys Chem Chem Phys. 2009 Sep 28;11(36):7780-91. doi: 10.1039/b904070f. Epub 2009 Jun 3.
6
Spectroscopic characterisation and manipulation of arrays of sub-picolitre aerosol droplets.
Lab Chip. 2009 Feb 21;9(4):521-8. doi: 10.1039/b814545h. Epub 2008 Nov 19.
7
Probing the evaporation of ternary ethanol-methanol-water droplets by cavity enhanced Raman scattering.
Phys Chem Chem Phys. 2007 Oct 21;9(39):5344-52. doi: 10.1039/b706211g. Epub 2007 Aug 6.
8
Controlling and characterizing the coagulation of liquid aerosol droplets.
J Chem Phys. 2006 Sep 21;125(11):114506. doi: 10.1063/1.2336772.
10
Spectroscopic characterization of aqueous microdroplets containing inorganic salts.
Analyst. 2011 Sep 7;136(17):3487-95. doi: 10.1039/c0an00843e. Epub 2011 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验