Suppr超能文献

电压脉冲可改变神经接口特性,并改善慢性植入微电极的单元记录。

Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.

作者信息

Otto Kevin J, Johnson Matthew D, Kipke Daryl R

机构信息

Kresge Hearing Research Institute, University of Michigan, Ann Arbor 48109, USA.

出版信息

IEEE Trans Biomed Eng. 2006 Feb;53(2):333-40. doi: 10.1109/TBME.2005.862530.

Abstract

Current neuroprosthetic systems based on electro-physiological recording have an extended, yet finite working lifetime. Some posited lifetime-extension solutions involve improving device biocompatibility or suppressing host immune responses. Our objective was to test an alternative solution comprised of applying a voltage pulse to a microelectrode site, herein termed "rejuvenation." Previously, investigators have reported preliminary electrophysiological results by utilizing a similar voltage pulse. In this study we sought to further explore this phenomenon via two methods: 1) electrophysiology; 2) an equivalent circuit model applied to impedance spectroscopy data. The experiments were conducted via chronically implanted silicon-substrate iridium microelectrode arrays in the rat cortex. Rejuvenation voltages resulted in increased unit recording signal-to-noise ratios (10% +/- 2%), with a maximal increase of 195% from 3.74 to 11.02. Rejuvenation also reduced the electrode site impedances at 1 kHz (67% +/- 2%). Neither the impedance nor recording properties of the electrodes changed on neighboring microelectrode sites that were not rejuvenated. In the equivalent circuit model, we found a transient increase in conductivity, the majority of which corresponded to a decrease in the tissue resistance component (44% +/- 7%). These findings suggest that rejuvenation may be an intervention strategy to prolong the functional lifetime of chronically implanted microelectrodes.

摘要

目前基于电生理记录的神经假体系统具有较长但有限的工作寿命。一些提出的延长寿命的解决方案包括提高设备的生物相容性或抑制宿主免疫反应。我们的目标是测试一种替代解决方案,即对微电极部位施加电压脉冲,在此称为“恢复活力”。此前,研究人员通过利用类似的电压脉冲报告了初步的电生理结果。在本研究中,我们试图通过两种方法进一步探索这一现象:1)电生理学;2)应用于阻抗谱数据的等效电路模型。实验通过在大鼠皮层中长期植入硅基铱微电极阵列进行。恢复活力的电压导致单位记录信噪比增加(10%±2%),最大增加195%,从3.74增加到11.02。恢复活力还降低了1kHz时的电极部位阻抗(67%±2%)。未恢复活力的相邻微电极部位的电极阻抗和记录特性均未改变。在等效电路模型中,我们发现电导率出现短暂增加,其中大部分对应于组织电阻成分的降低(44%±7%)。这些发现表明,恢复活力可能是一种延长长期植入微电极功能寿命的干预策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验