Dorogovtsev S N, Goltsev A V, Mendes J F F
Departamento de Física da Universidade de Aveiro, 3810-193 Aveiro, Portugal and Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia.
Phys Rev Lett. 2006 Feb 3;96(4):040601. doi: 10.1103/PhysRevLett.96.040601. Epub 2006 Feb 2.
We analytically describe the architecture of randomly damaged uncorrelated networks as a set of successively enclosed substructures--k-cores. The k-core is the largest subgraph where vertices have at least k interconnections. We find the structure of k-cores, their sizes, and their birthpoints--the bootstrap percolation thresholds. We show that in networks with a finite mean number zeta2 of the second-nearest neighbors, the emergence of a k-core is a hybrid phase transition. In contrast, if zeta2 diverges, the networks contain an infinite sequence of k-cores which are ultrarobust against random damage.
我们通过分析将随机受损的不相关网络的架构描述为一组连续嵌套的子结构——k核。k核是顶点至少有k个互连的最大子图。我们确定了k核的结构、它们的大小以及它们的起始点——自引导渗流阈值。我们表明,在具有有限平均第二近邻数ζ2的网络中,k核的出现是一种混合相变。相比之下,如果ζ2发散,则网络包含一个无限的k核序列,这些k核对随机损伤具有超强抗性。