Ashwin Peter, Burylko Oleksandr, Maistrenko Yuri, Popovych Oleksandr
Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QE, United Kingdom.
Phys Rev Lett. 2006 Feb 10;96(5):054102. doi: 10.1103/PhysRevLett.96.054102. Epub 2006 Feb 6.
We discuss the sensitivity of a population of coupled oscillators to differences in their natural frequencies, i.e., to detuning. We argue that for three or more oscillators, one can get great sensitivity even if the coupling is strong. For N globally coupled phase oscillators we find there can be bifurcation to extreme sensitivity, where frequency locking can be destroyed by arbitrarily small detuning. This extreme sensitivity is absent for N = 2, appears at isolated parameter values for N = 3 and N = 4, and can appear robustly for open sets of parameter values for N > or = 5 oscillators.
我们讨论了一群耦合振子对其固有频率差异(即失谐)的敏感度。我们认为,对于三个或更多振子,即使耦合很强,也能获得很高的敏感度。对于N个全局耦合的相位振子,我们发现可能会出现向极端敏感度的分岔,即任意小的失谐都可能破坏频率锁定。对于N = 2的情况不存在这种极端敏感度,对于N = 3和N = 4,它出现在孤立的参数值处,而对于N≥5个振子,它可以在参数值的开集上稳健地出现。