Suppr超能文献

(R)-和(S)-美沙酮及结构相关阿片类药物对吗啡体外生成M3G和M6G的差异抑制作用。

Differential in vitro inhibition of M3G and M6G formation from morphine by (R)- and (S)-methadone and structurally related opioids.

作者信息

Morrish Glynn A, Foster David J R, Somogyi Andrew A

机构信息

Department of Clinical and Experimental Pharmacology, The University of Adelaide, and Department of Clinical Pharmacology, Royal Adelaide Hospital, Australia.

出版信息

Br J Clin Pharmacol. 2006 Mar;61(3):326-35. doi: 10.1111/j.1365-2125.2005.02573.x.

Abstract

AIMS

To determine the in vitro kinetics of morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) formation and the inhibition potential by methadone enantiomers and structurally related opioids.

METHODS

M3G and M6G formation kinetics from morphine were determined using microsomes from five human livers. Inhibition of glucuronide formation was investigated with eight inhibitors (100 microm) and the mechanism of inhibition determined for (R)- and (S)-methadone (70-500 microm) using three microsomal samples.

RESULTS

Glucuronide formation displayed single enzyme kinetics. The M3G Vmax (mean+/-SD) was 4.8-fold greater than M6G Vmax (555+/-110 vs. 115+/-19 nmol mg-1 protein h-1; P=0.006, mean of difference 439; 95% confidence interval 313, 565 nmol mg-1 protein h-1). Km values for M3G and M6G formation were not significantly different (1.12+/-0.37 vs. 1.11+/-0.31 mm; P=0.89, 0.02; -0.29, 0.32 mm). M3G and M6G formation was inhibited (P<0.01) with a significant increase in the M3G/M6G ratio (P<0.01) for all compounds tested. Detailed analysis with (R)- and (S)-methadone revealed noncompetitive inhibition with (R)-methadone Ki of 320+/-42 microm and 192+/-12 microm for M3G and M6G, respectively, and (S)-methadone Ki of 226+/-30 microm and 152+/-20 microm for M3G and M6G, respectively. Ki values for M3G inhibition were significantly greater than for M6G for (R)-methadone (P=0.017, 128; 55, 202 microm) and (S)-methadone (P=0.026, 75; 22, 128 microm).

CONCLUSIONS

Both methadone enantiomers noncompetitively inhibited the formation of morphine's primary metabolites, with greater inhibition of M6G formation compared with M3G. These findings indicate a mechanism for reduced morphine clearance in methadone-maintained patients and reduced relative formation of the opioid active M6G compared with M3G.

摘要

目的

确定吗啡 - 3 - 葡萄糖醛酸苷(M3G)和吗啡 - 6 - 葡萄糖醛酸苷(M6G)形成的体外动力学以及美沙酮对映体和结构相关阿片类药物的抑制潜力。

方法

使用来自五个人肝脏的微粒体测定吗啡形成M3G和M6G的动力学。用八种抑制剂(100微摩尔)研究葡萄糖醛酸苷形成的抑制作用,并使用三个微粒体样品确定(R) - 和(S) - 美沙酮(70 - 500微摩尔)的抑制机制。

结果

葡萄糖醛酸苷形成表现出单酶动力学。M3G的Vmax(平均值±标准差)比M6G的Vmax大4.8倍(555±110对115±19纳摩尔·毫克⁻¹蛋白质·小时⁻¹;P = 0.006,差异平均值439;95%置信区间313,565纳摩尔·毫克⁻¹蛋白质·小时⁻¹)。M3G和M6G形成的Km值无显著差异(1.12±0.37对1.11±0.31毫摩尔;P = 0.89,0.02; - 0.29,0.32毫摩尔)。对于所有测试化合物,M3G和M6G的形成均受到抑制(P < 0.01),且M3G/M6G比值显著增加(P < 0.01)。对(R) - 和(S) - 美沙酮的详细分析显示,(R) - 和(S) - 美沙酮对M3G和M6G的抑制均为非竞争性抑制,(R) - 美沙酮对M3G和M6G的Ki分别为320±42微摩尔和192±12微摩尔,(S) - 美沙酮对M3G和M6G的Ki分别为226±30微摩尔和152±20微摩尔。对于(R) - 美沙酮(P = 0.017,128;55,202微摩尔)和(S) - 美沙酮(P = 0.026,75;22,128微摩尔),M3G抑制的Ki值显著大于M6G抑制的Ki值。

结论

两种美沙酮对映体均非竞争性抑制吗啡主要代谢产物的形成,与M3G相比,对M6G形成的抑制作用更强。这些发现表明了在美沙酮维持治疗患者中吗啡清除率降低以及与M3G相比阿片类活性M6G相对形成减少的机制。

相似文献

4
Non-opioid induction of morphine-6-glucuronide synthesis is elicited by prolonged exposure of rat hepatocytes to heroin.
Drug Alcohol Depend. 2008 Dec 1;98(3):179-84. doi: 10.1016/j.drugalcdep.2008.05.008. Epub 2008 Jul 1.
5
Effect of repeated administrations of heroin, naltrexone, methadone, and alcohol on morphine glucuronidation in the rat.
Psychopharmacology (Berl). 2005 Oct;182(1):58-64. doi: 10.1007/s00213-005-0030-7. Epub 2005 Sep 29.
7
Randomized placebo-controlled trial of the activity of the morphine glucuronides.
Clin Pharmacol Ther. 2000 Dec;68(6):667-76. doi: 10.1067/mcp.2000.111934.
8
Modulation of metabolic effects of morphine-6-glucuronide by morphine-3-glucuronide.
Brain Res Bull. 1995;38(4):325-9. doi: 10.1016/0361-9230(95)00104-m.
10
Repeated exposures to heroin and/or cadmium alter the rate of formation of morphine glucuronides in the rat.
J Pharmacol Exp Ther. 2003 Nov;307(2):651-60. doi: 10.1124/jpet.103.055467. Epub 2003 Sep 15.

引用本文的文献

1
Hydrocodone, Oxycodone, and Morphine Metabolism and Drug-Drug Interactions.
J Pharmacol Exp Ther. 2023 Nov;387(2):150-169. doi: 10.1124/jpet.123.001651. Epub 2023 Sep 7.
2
Physiologically-Based Pharmacokinetic Model of Morphine and Morphine-3-Glucuronide in Nonalcoholic Steatohepatitis.
Clin Pharmacol Ther. 2021 Mar;109(3):676-687. doi: 10.1002/cpt.2037. Epub 2020 Nov 6.
3
Computational framework for predictive PBPK-PD-Tox simulations of opioids and antidotes.
J Pharmacokinet Pharmacodyn. 2019 Dec;46(6):513-529. doi: 10.1007/s10928-019-09648-1. Epub 2019 Aug 8.
4
Could Postnatal Age-Related Uridine Diphosphate Glucuronic Acid Be a Rate-Limiting Factor in the Metabolism of Morphine During the First Week of Life?
CPT Pharmacometrics Syst Pharmacol. 2019 Jul;8(7):469-477. doi: 10.1002/psp4.12407. Epub 2019 May 10.
5
Pharmacogenetics of Methadone Response.
Mol Diagn Ther. 2018 Feb;22(1):57-78. doi: 10.1007/s40291-017-0311-y.
8
9
Endogenous opiates and behavior: 2006.
Peptides. 2007 Dec;28(12):2435-513. doi: 10.1016/j.peptides.2007.09.002. Epub 2007 Sep 11.

本文引用的文献

1
Population pharmacokinetics of (R)-, (S)- and rac-methadone in methadone maintenance patients.
Br J Clin Pharmacol. 2004 Jun;57(6):742-55. doi: 10.1111/j.1365-2125.2004.02079.x.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
7
A discordance between cytochrome P450 2D6 genotype and phenotype in patients undergoing methadone maintenance treatment.
Br J Clin Pharmacol. 2003 Aug;56(2):220-4. doi: 10.1046/j.1365-2125.2003.01851.x.
8
In vitro-in vivo correlations for drugs eliminated by glucuronidation: investigations with the model substrate zidovudine.
Br J Clin Pharmacol. 2002 Nov;54(5):493-503. doi: 10.1046/j.1365-2125.2002.01669.x.
9
Inhibition and active sites of UDP-glucuronosyltransferases 2B7 and 1A1.
Drug Metab Dispos. 2002 Dec;30(12):1364-7. doi: 10.1124/dmd.30.12.1364.
10
Limited phase I study of morphine-3-glucuronide.
J Pharm Sci. 2001 Nov;90(11):1810-6. doi: 10.1002/jps.1131.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验