Suppr超能文献

一种经过改造的无义URA3等位基因提供了一个通用系统,用于检测酿酒酵母中[PSI+]朊病毒的存在、缺失和出现情况。

An engineered nonsense URA3 allele provides a versatile system to detect the presence, absence and appearance of the [PSI+] prion in Saccharomyces cerevisiae.

作者信息

Manogaran Anita L, Kirkland Kathryn T, Liebman Susan W

机构信息

Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607, USA.

出版信息

Yeast. 2006 Jan 30;23(2):141-7. doi: 10.1002/yea.1341.

Abstract

Common methods to identify yeast cells containing the prion form of the Sup35 translation termination factor, [PSI+], involve a nonsense suppressor phenotype. Decreased function of Sup35p in [PSI+] cells leads to read-through of certain nonsense mutations in a few auxotrophic markers, e.g. ade1-14. This read-through results in growth on adenine-deficient media. While this powerful tool has dramatically facilitated the study of [PSI+], it is limited to a narrow range of laboratory strains and cannot easily be used to screen for cells that have lost the [PSI+] prion. Therefore we have engineered a nonsense mutation in the widely used URA3 gene, termed the ura3-14 allele. Introduction of the ura3-14 allele into an array of genetic backgrounds, carrying a loss-of-function URA3 mutation and [PSI+], allows for growth on media lacking uracil, indicative of decreased translational termination efficiency. This ura3-14 allele is able to distinguish various forms of the [PSI+] prion, called variants, and is able to detect the de novo appearance of [PSI+] in strains carrying the prion form of Rnq1p, [PIN+]. Furthermore, 5-fluoroorotic acid, which kills cells making functional Ura3p, provides a means to select for [psi-] derivatives in a population of [PSI+] cells marked with the ura3-14 allele, making this system much more versatile than previous methods.

摘要

鉴定含有Sup35翻译终止因子朊病毒形式[PSI+]的酵母细胞的常用方法涉及无义抑制子表型。[PSI+]细胞中Sup35p功能的降低导致一些营养缺陷型标记中某些无义突变的通读,例如ade1-14。这种通读导致在缺乏腺嘌呤的培养基上生长。虽然这个强大的工具极大地促进了对[PSI+]的研究,但它仅限于狭窄范围的实验室菌株,并且不能轻易用于筛选已失去[PSI+]朊病毒的细胞。因此,我们在广泛使用的URA3基因中设计了一个无义突变,称为ura3-14等位基因。将ura3-14等位基因引入一系列遗传背景中,这些遗传背景带有功能丧失的URA3突变和[PSI+],使得细胞能够在缺乏尿嘧啶的培养基上生长,这表明翻译终止效率降低。这个ura3-14等位基因能够区分[PSI+]朊病毒的各种形式,即变体,并且能够检测携带Rnq1p朊病毒形式[PIN+]的菌株中[PSI+]的从头出现。此外,5-氟乳清酸能够杀死产生功能性Ura3p的细胞,提供了一种在标记有ura3-14等位基因的[PSI+]细胞群体中选择[psi-]衍生物的方法,使得这个系统比以前的方法更加通用。

相似文献

2
Channel mutations in Hsp104 hexamer distinctively affect thermotolerance and prion-specific propagation.
Mol Microbiol. 2007 Mar;63(6):1669-83. doi: 10.1111/j.1365-2958.2007.05629.x.
4
Nonsense Mutations in the Yeast Gene Affect the [] Prion Propagation.
Int J Mol Sci. 2020 Feb 28;21(5):1648. doi: 10.3390/ijms21051648.
6
Mutants of the Paf1 complex alter phenotypic expression of the yeast prion [PSI+].
Mol Biol Cell. 2009 Apr;20(8):2229-41. doi: 10.1091/mbc.e08-08-0813. Epub 2009 Feb 18.
10
Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae.
Genetics. 1996 Dec;144(4):1375-86. doi: 10.1093/genetics/144.4.1375.

引用本文的文献

1
Yeast Prions: Discovery, Nature, Cellular Manipulation and Implication.
J Microbiol Biotechnol. 2025 Jul 14;35:e2503046. doi: 10.4014/jmb.2503.03046.
2
Total propagation of yeast prion conformers in ssz1∆ upf1∆ Hsp104 triple mutants.
Curr Genet. 2025 Mar 29;71(1):8. doi: 10.1007/s00294-025-01313-0.
3
Prions in Microbes: The Least in the Most.
J Microbiol. 2023 Oct;61(10):881-889. doi: 10.1007/s12275-023-00070-4. Epub 2023 Sep 5.
6
Antiprion systems in yeast cooperate to cure or prevent the generation of nearly all [] and [URE3] prions.
Proc Natl Acad Sci U S A. 2022 Jul 12;119(28):e2205500119. doi: 10.1073/pnas.2205500119. Epub 2022 Jul 5.
7
Normal levels of ribosome-associated chaperones cure two groups of [PSI+] prion variants.
Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):26298-26306. doi: 10.1073/pnas.2016954117. Epub 2020 Oct 5.
8
Study of Amyloids Using Yeast.
Methods Mol Biol. 2018;1779:313-339. doi: 10.1007/978-1-4939-7816-8_19.
9
Nonsense-mediated mRNA decay factors cure most [PSI+] prion variants.
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):E1184-E1193. doi: 10.1073/pnas.1717495115. Epub 2018 Jan 22.
10
[PSI+] prion propagation is controlled by inositol polyphosphates.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8402-E8410. doi: 10.1073/pnas.1714361114. Epub 2017 Sep 18.

本文引用的文献

1
Genetic interactions between [PSI+] and nonstop mRNA decay affect phenotypic variation.
Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10244-9. doi: 10.1073/pnas.0504557102. Epub 2005 Jul 7.
2
Structural clues to prion mysteries.
Nat Struct Mol Biol. 2005 Jul;12(7):567-8. doi: 10.1038/nsmb0705-567.
3
Structural insights into a yeast prion illuminate nucleation and strain diversity.
Nature. 2005 Jun 9;435(7043):765-72. doi: 10.1038/nature03679.
5
Global analysis of protein localization in budding yeast.
Nature. 2003 Oct 16;425(6959):686-91. doi: 10.1038/nature02026.
7
Identification of stop codon readthrough genes in Saccharomyces cerevisiae.
Nucleic Acids Res. 2003 May 1;31(9):2289-96. doi: 10.1093/nar/gkg330.
8
Interactions among prions and prion "strains" in yeast.
Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4(Suppl 4):16392-9. doi: 10.1073/pnas.152330699. Epub 2002 Jul 30.
10
Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion.
Cell. 2001 Jul 27;106(2):183-94. doi: 10.1016/s0092-8674(01)00440-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验