Suppr超能文献

神经肽原激素切割的预测及其在RFamides中的应用

Prediction of neuropeptide prohormone cleavages with application to RFamides.

作者信息

Southey Bruce R, Rodriguez-Zas Sandra L, Sweedler Jonathan V

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Peptides. 2006 May;27(5):1087-98. doi: 10.1016/j.peptides.2005.07.026. Epub 2006 Feb 21.

Abstract

Genomic information is becoming available for an ever-wider range of animals with the genes for several well-characterized peptide families, such as the RFamides, detected in a surprisingly diverse set of these animals. While bioinformatic tools allow the prediction of the RFamide-related prohormones from genetic information, it is more difficult to accurately predict the final processed peptides because of the large number of processing steps required to convert a prohormone into mature bioactive peptides. Several statistical-based methods for predicting basic site cleavages in prohormones are described, and their ability to predict the basic site cleavages in a variety of RFamide-related peptides from vertebrates and invertebrates is reported. Specifically, the cleavages in the invertebrate FMRFamides, and the vertebrate NPFFa, RFRPa, and PrRPa peptide families are modeled. The three models compared here are based on known cleavage motifs, a logistic regression, and artificial neural networks. Improvements in the accuracy and precision of the cleavage estimates will lead to increased utilization of these models for predicting bioactive neuropeptides before experimental verification is available.

摘要

基因组信息正越来越多地在种类日益繁多的动物中得以获取,在这些动物中发现了几个特征明确的肽家族的基因,比如RFamides,而且其种类惊人地多样。虽然生物信息学工具能够根据遗传信息预测与RFamide相关的激素原,但由于将激素原转化为成熟生物活性肽需要大量加工步骤,因此准确预测最终加工后的肽更加困难。本文描述了几种基于统计的预测激素原中碱性位点切割的方法,并报告了它们预测脊椎动物和无脊椎动物各种与RFamide相关肽中碱性位点切割的能力。具体而言,对无脊椎动物FMRFamides以及脊椎动物NPFFa、RFRPa和PrRPa肽家族中的切割进行了建模。这里比较的三种模型分别基于已知的切割基序、逻辑回归和人工神经网络。切割估计的准确性和精确性的提高将导致在实验验证之前,这些模型在预测生物活性神经肽方面的利用率增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验