Suppr超能文献

Protein stability in the presence of polymer degradation products: consequences for controlled release formulations.

作者信息

Determan Amy S, Wilson Jennifer H, Kipper Matt J, Wannemuehler Michael J, Narasimhan Balaji

机构信息

Department of Chemical and Biological Engineering, Iowa State University, 2035 Sweeney Hall, Ames, IA 50011, USA.

出版信息

Biomaterials. 2006 Jun;27(17):3312-20. doi: 10.1016/j.biomaterials.2006.01.054. Epub 2006 Feb 28.

Abstract

When encapsulating proteins in polymer microspheres for sustained drug delivery there are three stages during which the stability of the protein must be maintained: (1) the fabrication of the microspheres, (2) the storage of the microspheres, and (3) the release of the encapsulated protein. This study focuses on the effects of polymer degradation products on the primary, secondary, and tertiary structure of tetanus toxoid, ovalbumin (Ova), and lysozyme after incubation for 0 or 20 days in the presence of ester (lactic acid and glycolic acid) and anhydride (sebacic acid and 1,6-bis(p-carboxyphenoxy)hexane) monomers. The structure and antigenicity or enzymatic activity of each protein in the presence of each monomer was quantified. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, circular dichroism, and fluorescence spectroscopy were used to assess/evaluate the primary, secondary, and tertiary structures of the proteins, respectively. Enzyme-linked immunosorbent assay was used to measure changes in the antigenicity of tetanus toxoid and Ova and a fluorescence-based assay was used to determine the enzymatic activity of lysozyme. Tetanus toxoid was found to be the most stable in the presence of anhydride monomers, while Ova was most stable in the presence of sebacic acid, and lysozyme was stable when incubated with all of the monomers studied.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验