Pratte Pascal, van den Bergh Hubert, Rossi Michel J
Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Pollution Atmosphérique et sol (LPAS), Bât CH H5, station 6, CH-1015 Lausanne, Switzerland.
J Phys Chem A. 2006 Mar 9;110(9):3042-58. doi: 10.1021/jp053974s.
The kinetics of condensation (kc) and the evaporation flux (J(ev)) of H2O on ice were studied in the range 130-210 K using pulsed-valve and steady-state techniques in a low-pressure flow reactor. The uptake coefficient gamma was measured for different types of ice, namely, condensed (C), bulk (B), single crystal (SC), snow (S), and cubic ice (K). The negative temperature dependence of gamma for C, B, SC, and S ice reveals a precursor-mediated adsorption/desorption process in agreement with the proposal of Davy and Somorjai.(1) The non-Arrhenius behavior of the rate of condensation, kc, manifests itself in a discontinuity in the range 170-190 K depending on the type of ice and is consistent with the precursor model. The average of the energy of sublimation DeltaH(S) degrees is (12.0 +/- 1.4) kcal/mol for C, B, S, and SC ice and is identical within experimental uncertainty between 136 and 210 K. The same is true for the entropy of sublimation DeltaS(S). In contrast, both gamma and the evaporative flux J(ev) are significantly different for different ices. In the range 130-210 K, J(ev) of H2O ice was significantly smaller than the maximum theoretically allowed value. This corroborates gamma values significantly smaller than unity in that T range. On the basis of the present kinetic parameters, the time to complete evaporation of a small ice particle of radius 1 mum is approximately a factor of 5 larger than that previously thought.
在低压流动反应器中,使用脉冲阀和稳态技术,在130 - 210 K范围内研究了H₂O在冰上的凝结动力学(kc)和蒸发通量(J(ev))。测量了不同类型冰(即凝聚态(C)、块状(B)、单晶(SC)、雪(S)和立方冰(K))的摄取系数γ。C、B、SC和S冰的γ的负温度依赖性揭示了一种前体介导的吸附/解吸过程,这与Davy和Somorjai的提议一致。(1) 凝结速率kc的非阿仑尼乌斯行为表现为在170 - 190 K范围内根据冰的类型出现不连续性,这与前体模型一致。对于C、B、S和SC冰,升华能ΔH(S)°的平均值为(12.0 ± 1.4) kcal/mol,并且在136至210 K的实验不确定度范围内是相同的。升华熵ΔS(S)也是如此。相比之下,不同冰的γ和蒸发通量J(ev)都有显著差异。在130 - 210 K范围内,H₂O冰的J(ev)明显小于理论上允许的最大值。这证实了在该温度范围内γ值明显小于1。根据目前的动力学参数,半径为1μm的小冰粒完全蒸发所需的时间比之前认为的大约大5倍。