Suppr超能文献

用于固体混合物中麻醉品分类和定量的导数预处理与自动多项式基线校正方法的比较

Comparison of derivative preprocessing and automated polynomial baseline correction method for classification and quantification of narcotics in solid mixtures.

作者信息

Leger Marc N, Ryder Alan G

机构信息

Department of Chemistry and National Centre for Biomedical Engineering Science, National University of Ireland-Galway.

出版信息

Appl Spectrosc. 2006 Feb;60(2):182-93. doi: 10.1366/000370206776023304.

Abstract

This work offers a real-world comparison of derivative preprocessing and a new polynomial method described by Lieber and Mahadevan-Jansen (LMJ) for baseline correction of Raman spectra with widely varying backgrounds. This comparison is based on their outcomes in factor analysis, analyte discrimination, and quantification. Both correction methods are applied to a Raman spectra data set taken from 85 solid samples of illegal narcotics diluted with various materials. It is found that neither approach outperforms the other, as they give similar principal component analysis (PCA) models and quantification errors: cocaine and heroin show cross-validation errors of approximately 8%, while MDMA is quantified to a cross-validation error of approximately 3-4%. The LMJ method does offer several other advantages, the most significant being the retention of original peak shapes after the correction, which simplifies the interpretation of the preprocessed spectra. The LMJ method is therefore recommended for use as a baseline correction method in future research with Raman spectroscopy.

摘要

这项工作对导数预处理和利伯(Lieber)与马哈德万 - 扬森(Mahadevan-Jansen,LMJ)描述的一种新的多项式方法进行了实际比较,用于对背景差异很大的拉曼光谱进行基线校正。这种比较基于它们在因子分析、分析物鉴别和定量方面的结果。两种校正方法都应用于一个拉曼光谱数据集,该数据集取自85个用各种材料稀释的非法麻醉品固体样品。结果发现,两种方法都没有比另一种方法表现更优,因为它们给出了相似的主成分分析(PCA)模型和定量误差:可卡因和海洛因的交叉验证误差约为8%,而摇头丸的定量交叉验证误差约为3 - 4%。LMJ方法确实还具有其他几个优点,最显著的是校正后能保留原始峰形,这简化了预处理光谱的解释。因此,建议在未来拉曼光谱研究中使用LMJ方法作为基线校正方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验