Lloyd G K, Lowenthal A, Javoy-Agid F, Constantidinis J
Synthélabo Recherche (L.E.R.S.), Paris, France.
Eur J Pharmacol. 1991 May 2;197(1):33-9. doi: 10.1016/0014-2999(91)90361-s.
The functional integrity of the GABAA receptor-benzodiazepine (BZ) recognition site-Cl- ionophore complex was assessed by means of [35S]TBPS (t-butylbicyclophosphorothionate) binding to frontal cortex membranes prepared from frozen postmortem brain tissue taken from control (n = 4), Alzheimer (n = 7), Parkinson (n = 3) and Huntington's chorea (n = 2) patients. Specific [35S]TBPS binding was similar in control, Parkinson's disease and Huntington's chorea brains, but was significantly reduced (78% control, P less than 0.01) in frontal cortex membranes from Alzheimer's patients. The linkage between the BZ recognition sites and the GABAA receptor-linked Cl- ionophore was functionally intact in these membranes as BZ site agonists (zolpidem, alpidem, flunitrazepam and clonazepam) enhanced [35S]TBPS binding under the conditions used (well-washed membranes in the presence of 1.0 M NaCl). Zolpidem (BZ1 selective) exhibited a biphasic enhancement in control membranes whereas the other compounds induced a bell-shaped concentration-response curve. The enhancement of [35S]TBPS binding by alpidem, flunitrazepam and clonazepam was greater in frontal cortex membranes from Alzheimer's patients than in controls whereas it tended to be reduced in membranes from the brains of Huntington's chorea patients. These studies demonstrate the functional integrity of the GABAA receptor macromolecular complex and also the usefulness of [35S]TBPS binding in the study of human postmortem tissue.