迈向第五层锥体投射神经元亚群的分类

Towards the classification of subpopulations of layer V pyramidal projection neurons.

作者信息

Molnár Zoltán, Cheung Amanda F P

机构信息

Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.

出版信息

Neurosci Res. 2006 Jun;55(2):105-15. doi: 10.1016/j.neures.2006.02.008. Epub 2006 Mar 15.

Abstract

The nature of cerebral cortical circuitry has been increasingly clarified by markers for the identification of precise cell types with specific morphology, connectivity and distinct physiological properties. Molecular markers are not only helpful in dissecting cortical circuitry, but also give insight into the mechanisms of cortical neuronal specification and differentiation. The two principal neuronal types of the cerebral cortex are the pyramidal and GABAergic cells. Pyramidal cells are excitatory and project to distant targets, while GABAergic neurons are mostly inhibitory non-pyramidal interneurons. Reliable markers for specific subtypes of interneurons are available and have been employed in the classification and functional analysis of cortical circuitry. Until recently, cortical pyramidal neurons have been considered a homogeneous class of cells. This concept is now changing as the powerful tools of molecular biology and genetics identify molecular tags for subtypes of pyramidal cells such as: Otx-1 [Frantz, G.D., Bohner, A.P., Akers, R.M., McConnell, S.K., 1994. Regulation of the POU domain gene SCIP during cerebral cortical development. J. Neurosci. 14, 472-485; Weimann, J.M., Zhang, Y.A., Levin, M.E., Devine, W.P., Brulet, P., McConnell, S.K., 1999. Cortical neurons require Otx1 for the refinement of exuberant axonal projections to subcortical targets. Neuron 24, 819-831]; SMI-32, N200 and FNP-7 [Voelker, C.C., Garin, N., Taylor, J.S., Gahwiler, B.H., Hornung, J.P., Molnár, Z., 2004. Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro. Cereb. Cortex 14, 1276-1286]; ER81 [Hevner, R.F., Daza, R.A., Rubenstein, J.L., Stunnenberg, H., Olavarria, J.F., Englund, C., 2003. Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev. Neurosci. 25 (2-4), 139-151; Yoneshima, H., Yamasaki, S., Voelker, C., Molnár, Z., Christophe, E., Audinat, E., Takemoto, M., Tsuji, S., Fujita, I., Yamamoto, N., 2006. ER81 is expressed in a subpopulation of layer 5 projection neurons in rodent cerebral cortices. Neuroscience, 137, 401-412]; Lmo4 [Bulchand, S., Subramanian, L., Tole, S., 2003. Dynamic spatiotemporal expression of LIM genes and cofactors in the embryonic and postnatal cerebral cortex. Dev. Dyn. 226, 460-469; Arlotta, P., Molyneaux, B.J., Chen, J., Inoue, J., Kominami, R., Macklis, J.D., 2005. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45 (2), 207-221]; CTIP2 [Arlotta, P., Molyneaux, B.J., Chen, J., Inoue, J., Kominami, R., Macklis, J.D., 2005. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45 (2), 207-221]; Fez1 [Molyneaux, B.J., Arlotta, P., Hirata, T., Hibi, M., Macklis, J.D., 2005. Fez1 is required for the birth and specification of corticospinal motor neurons. Neuron 47 (6), 817-831; Chen, B., Schaevitz, L.R., McConnell, S.K., 2005. Fez1 regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 102 (47), 17184-17189]. These genes outline the numerous subtypes of pyramidal cells and are increasingly refining our previous classifications. They also indicate specific developmental programs operate in cell fate decisions. This review will describe the progress made on the correlation of these markers to each other within a specific subtype of layer V neurons with identified, stereotypic projections. Further work is needed to link these data with observations on somatodendritic morphology and physiological properties. The integrated molecular, anatomical and physiological characterisation of pyramidal neurons will lead to a much better appreciation of functional cortical circuits.

摘要

通过用于识别具有特定形态、连接性和独特生理特性的精确细胞类型的标记物,大脑皮质回路的性质已越来越清晰。分子标记物不仅有助于剖析皮质回路,还能深入了解皮质神经元特化和分化的机制。大脑皮质的两种主要神经元类型是锥体细胞和γ-氨基丁酸(GABA)能细胞。锥体细胞具有兴奋性,并投射到远处的靶点,而GABA能神经元大多是抑制性的非锥体细胞中间神经元。现已获得用于中间神经元特定亚型的可靠标记物,并已将其应用于皮质回路的分类和功能分析。直到最近,皮质锥体细胞一直被视为一类同质的细胞。随着分子生物学和遗传学的强大工具识别出锥体细胞亚型的分子标签,如:Otx-1 [弗兰茨,G.D.,博纳,A.P.,埃克斯,R.M.,麦康奈尔,S.K.,1994年。大脑皮质发育过程中POU结构域基因SCIP的调控。《神经科学杂志》14卷,472 - 485页;魏曼,J.M.,张,Y.A.,莱文,M.E.,迪瓦恩,W.P.,布鲁莱,P.,麦康奈尔,S.K.,1999年。皮质神经元需要Otx1来优化向皮质下靶点的过度轴突投射。《神经元》24卷,819 - 831页];SMI - 32、N200和FNP - 7 [福尔克,C.C.,加林,N.,泰勒,J.S.,加维勒,B.H.,霍恩ung,J.P.,莫尔纳尔,Z.,2004年。体内和体外V层锥体细胞亚群中选择性神经丝(SMI - 32、FNP - 7和N200)的表达。《大脑皮质》14卷,1276 - 1286页];ER81 [赫夫纳,R.F.,达萨,R.A.,鲁宾斯坦,J.L.,施图嫩贝格,H.,奥拉瓦里亚,J.F.,英格伦德,C.,2003年。超越层命运:迈向皮质投射/锥体细胞的分子分类。《发育神经科学》25卷(2 - 4期),139 - 151页;米岛,H.,山崎,S.,福尔克,C.,莫尔纳尔,Z.,克里斯托夫,E.,奥迪纳特,E.,竹本,M.,辻,S.,藤田,I.,山本,N.,2006年。ER81在啮齿动物大脑皮质V层投射神经元亚群中表达。《神经科学》137卷,401 - 412页];Lmo4 [布尔钱德,S.,苏布拉马尼亚姆,L.,托勒,S.,2003年。LIM基因及其辅因子在胚胎和出生后大脑皮质中的动态时空表达。《发育动力学》226卷,460 - 469页;阿洛塔,P.,莫利纽克斯,B.J.,陈,J.,井上,J.,小南,R.,麦克利斯,J.D.,2005年。体内控制皮质脊髓运动神经元发育的神经元亚型特异性基因。《神经元》45卷(2期),207 - 221页];CTIP2 [阿洛塔,P.,莫利纽克斯,B.J.,陈,J.,井上,J.,小南,R.,麦克利斯,J.D.,2005年。体内控制皮质脊髓运动神经元发育的神经元亚型特异性基因。《神经元》45卷(2期),207 - 221页];Fez1 [莫利纽克斯,B.J.,阿洛塔,P.,平田,T.,日比,M.,麦克利斯,J.D.,2005年。Fez1是皮质脊髓运动神经元的产生和特化所必需的。《神经元》47卷(6期),817 - 831页;陈,B.,沙埃维茨,L.R.,麦康奈尔,S.K.,2005年。Fez1调节大脑皮质V层皮质下投射神经元的分化和轴突靶向。《美国国家科学院院刊》102卷(47期),17184 - 17189页]。这些基因勾勒出了锥体细胞的众多亚型,并不断完善我们之前的分类。它们还表明特定的发育程序在细胞命运决定中起作用。本综述将描述在具有已确定的、刻板投射的V层神经元特定亚型内这些标记物相互之间的相关性方面所取得的进展。需要进一步开展工作,将这些数据与关于树突棘形态和生理特性的数据联系起来。对锥体细胞进行综合的分子、解剖学和生理学特征描述,将有助于更好地理解功能性皮质回路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索