Suppr超能文献

通过虚拟筛选进行命中和先导化合物生成中的非随机二次指纹图谱和基于线性判别分析的定量构效关系模型:发现新型抗疟化合物的一种有前景方法的理论与实验评估

Non-stochastic quadratic fingerprints and LDA-based QSAR models in hit and lead generation through virtual screening: theoretical and experimental assessment of a promising method for the discovery of new antimalarial compounds.

作者信息

Montero-Torres Alina, García-Sánchez Rory N, Marrero-Ponce Yovani, Machado-Tugores Yanetsy, Nogal-Ruiz Juan J, Martínez-Fernández Antonio R, Arán Vicente J, Ochoa Carmen, Meneses-Marcel Alfredo, Torrens Francisco

机构信息

Department of Drug Design, CBQ, Central University of Las Villas, Santa Clara, Villa Clara, Cuba.

出版信息

Eur J Med Chem. 2006 Apr;41(4):483-93. doi: 10.1016/j.ejmech.2005.12.010. Epub 2006 Mar 20.

Abstract

In order to explore the ability of non-stochastic quadratic indices to encode chemical information in antimalarials, four quantitative models for the discrimination of compounds having this property were generated and statistically compared. Accuracies of 90.2% and 83.3% for the training and test sets, respectively, were observed for the best of all the models, which included non-stochastic quadratic fingerprints weighted with Pauling electronegativities. With a comparative purpose and as a second validation experiment, an exercise of virtual screening of 65 already-reported antimalarials was carried out. Finally, 17 new compounds were classified as either active/inactive ones and experimentally evaluated for their potential antimalarial properties on the ferriprotoporphyrin (FP) IX biocrystallization inhibition test (FBIT). The theoretical predictions were in agreement with the experimental results. In the assayed test compound C5 resulted more active than chloroquine. The current result illustrates the usefulness of the TOMOCOMD-CARDD strategy in rational antimalarial-drug design, at the time that it introduces a new family of organic compounds as starting point for the development of promising antimalarials.

摘要

为了探索非随机二次指数在抗疟药物中编码化学信息的能力,生成了四种用于区分具有该性质化合物的定量模型,并进行了统计比较。在所有模型中,最佳模型对训练集和测试集的准确率分别为90.2%和83.3%,该模型包括用鲍林电负性加权的非随机二次指纹。作为对比目的和第二项验证实验,对65种已报道的抗疟药物进行了虚拟筛选。最后,17种新化合物被分类为活性/非活性化合物,并通过铁原卟啉(FP)IX生物结晶抑制试验(FBIT)对其潜在的抗疟特性进行了实验评估。理论预测与实验结果一致。在所测试的化合物中,化合物C5比氯喹更具活性。目前的结果说明了TOMOCOMD-CARDD策略在合理的抗疟药物设计中的有用性,同时引入了一个新的有机化合物家族作为开发有前景的抗疟药物的起点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验