Suppr超能文献

六氟化硫光电离动力学的含时密度泛函研究

Time dependent density functional study of the photoionization dynamics of SF6.

作者信息

Stener M, Toffoli D, Fronzoni G, Decleva P

机构信息

Dipartimento di Scienze Chimiche, Università di Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy.

出版信息

J Chem Phys. 2006 Mar 21;124(11):114306. doi: 10.1063/1.2178799.

Abstract

The B-spline linear combination of atomic orbitals method has been employed to study the valence and core photoionization dynamics of SF6. The cross section and asymmetry parameter profiles calculated at the time dependent density functional theory level have been found to be in fairly nice agreement with the experimental data, with the quality of the exchange-correlation statistical average of orbital potential results superior to the Van Leeuwen-Baerends 94 (LB94) ones [Phys. Rev. A 49, 2421 (1994)]. The role of response effects has been identified by a comparison of the time dependent density functional theory results with the Kohn-Sham ones interchannel coupling effects and autoionization resonances play an important role at low kinetic energies. Prominent shape resonances features have been analyzed in terms of "dipole prepared" continuum orbitals and interpreted as due to a large angular momentum centrifugal barrier as well as anisotropic (nonspherical) molecular effective potential. Finally, the method has been proven numerically stable, robust, and efficient, thanks to a noniterative implementation of the time dependent density functional theory equations and suitability of the multicentric B-spline basis set to describe continuum states from outer valence to deep core states.

摘要

已采用原子轨道的B样条线性组合方法来研究SF6的价态和芯能级光致电离动力学。发现在含时密度泛函理论水平下计算得到的截面和不对称参数分布与实验数据相当吻合,轨道势结果的交换关联统计平均值的质量优于范·李文 - 贝伦兹94(LB94)方法的结果[《物理评论A》49, 2421 (1994)]。通过比较含时密度泛函理论结果与科恩 - 沈(Kohn-Sham)结果,确定了响应效应的作用,通道间耦合效应和自电离共振在低动能时起重要作用。已根据“偶极制备”连续轨道分析了显著的形状共振特征,并解释为源于大的角动量离心势垒以及各向异性(非球形)的分子有效势。最后,由于含时密度泛函理论方程的非迭代实现以及多中心B样条基组适用于描述从外层价态到深芯态的连续态,该方法已被证明在数值上是稳定、可靠且高效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验