Suppr超能文献

一种用于超大型数据库虚拟筛选的新型搜索引擎。

A novel search engine for virtual screening of very large databases.

作者信息

Vidal David, Thormann Michael, Pons Miquel

机构信息

Laboratory of Biomolecular NMR, Barcelona Biomedical Research Institute, Parc Científic de Barcelona, Josep Samitier, 1-5 08028 Barcelona, Spain.

出版信息

J Chem Inf Model. 2006 Mar-Apr;46(2):836-43. doi: 10.1021/ci050458q.

Abstract

Virtual screening of large chemical databases using the structure of the receptor can be computationally very demanding. We present a novel strategy that combines exhaustive similarity searches directly in SMILES format with the docking of flexible ligands, whose 3D structure is generated on the fly from the SMILES representation. Our strategy makes use of the recently developed LINGO tools to extract implicit chemical information from SMILES strings and integrates LINGO similarities into a pseudo-evolutionary algorithm. The algorithm represents a combination of a fast target-independent similarity method with a slower but information richer target-focused method. A virtual search of FactorXa ligands provided 62% of the potential hits after docking only 6.5% of a database of nearly 1 million molecules. The set of solutions showed good diversity, indicating that the method shows good scaffold hopping capabilities.

摘要

使用受体结构对大型化学数据库进行虚拟筛选在计算上要求很高。我们提出了一种新颖的策略,该策略将直接以SMILES格式进行的详尽相似性搜索与柔性配体对接相结合,其三维结构由SMILES表示即时生成。我们的策略利用最近开发的LINGO工具从SMILES字符串中提取隐含化学信息,并将LINGO相似性集成到一种伪进化算法中。该算法代表了一种快速的与靶点无关的相似性方法与一种较慢但信息更丰富的以靶点为重点的方法的结合。对凝血因子Xa配体进行虚拟搜索,在对接近100万个分子的数据库中仅6.5%的分子后,就找到了62%的潜在命中物。这组解决方案显示出良好的多样性,表明该方法具有良好的骨架跳跃能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验