Suppr超能文献

Enhancement of antibacterial activity of beta-lactam antibiotics by [P2W18O62]6-, [SiMo12O40]4-, and [PTi2W10O40]7- against methicillin-resistant and vancomycin-resistant Staphylococcus aureus.

作者信息

Inoue Miyao, Suzuki Tomoko, Fujita Yutaka, Oda Mayumi, Matsumoto Nobuhiro, Yamase Toshihiro

机构信息

Chemical Resource Laboratory, Tokyo Institute of Technology, R1-21, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan.

出版信息

J Inorg Biochem. 2006 Jul;100(7):1225-33. doi: 10.1016/j.jinorgbio.2006.02.004. Epub 2006 Mar 23.

Abstract

The enhancement of antibacterial activity of beta-lactam antibiotics by polyoxometalates against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) was investigated by using K6[P2W18O62] . 14H2O (P2W18), K4[SiMo12O40] . 3H2O (SiMo12), and K7[PTi2W10O40] . 6H2O (PTi2W10). Susceptibility test by a beta-lactam-disk method showed the synergistic effect of the polyoxometalates in combination with oxacillin against both MRSA and VRSA. Energy dispersive X-ray analysis of the strain treated with P2W18 revealed localization of the polyoxometalate-tungsten atoms at the periphery of the cell, and the biological reduction of P2W18 and SiMo12 proceeded within both cells of MRSA and VRSA as far as they keep alive. These results indicate that the polyoxometalates can penetrate through the cell wall consisting of peptidoglycan layers and reach cytoplasmic membrane. The inhibitory effect of the polyoxometalates on both mecA- and pbp-induced mRNA expression of both MRSA and VRSA cells, verified by the RT-PCR-electrophoresis analysis, is observed, and the mechanism of the synergistic effect by the polyoxometalates is discussed in terms of the depression of penicillin-binding protein 2' (PBP2') coded by mecA gene.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验