Wang Hong, Liu Zhenqi, Li Guolian, Barrett Eugene J
Division of Endocrinology and Metabolism, Departmetn of Internal Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA.
Am J Physiol Endocrinol Metab. 2006 Aug;291(2):E323-32. doi: 10.1152/ajpendo.00047.2006. Epub 2006 Mar 28.
The pathways by which insulin exits the vasculature to muscle interstitium have not been characterized. In the present study, we infused FITC-labeled insulin to trace morphologically (using confocal immunohistochemical methods) insulin transport into rat skeletal muscle. We biopsied rectus muscle at 0, 10, 30, and 60 min after beginning a continuous (10 mU x min(-1) x kg(-1)), intravenous FITC-insulin infusion (with euglycemia maintained). The FITC-insulin distribution was compared with that of insulin receptors (IR), IGF-I receptors (IGF-IR), and caveolin-1 (a protein marker for caveolae) in skeletal muscle vasculature. We observed that muscle endothelium stained strongly for FITC-insulin within 10 min, and this persisted to 60 min. Endothelium stained more strongly for FITC-insulin than any other cellular elements in muscle. IR, IGF-IR, and caveolin-1 were also detected immunohistochemically in muscle endothelial cells. We further compared their intracellular distribution with that of FITC-insulin in cultured bovine aortic endothelial cells (bAECs). Considerable colocalization of IR or IGF-IR with FITC-insulin was noted. There was some but less overlap of IR or IGF-IR or FITC-insulin with caveolin-1. Immunoprecipitation of IR coprecipitated caveolin-1, and conversely the precipitation of caveolin-1 brought down IR. Furthermore, insulin increased the tyrosine phosphorylation of caveolin-1, and filipin (which inhibits caveolae formation) blocked insulin uptake. Finally, the ability of insulin, IGF-I, and IGF-I-blocking antibody to diminish insulin transport across bAECs grown on transwell plates suggested that IGF-IR, in addition to IR, can also mediate transendothelial insulin transit. We conclude that in vivo endothelial cells rapidly take up and concentrate insulin relative to plasma and muscle interstitium and that IGF-IR, like IR, may mediate insulin transit through endothelial cells in a process involving caveolae.
胰岛素从血管系统进入肌肉间质的途径尚未明确。在本研究中,我们注入异硫氰酸荧光素(FITC)标记的胰岛素,通过共聚焦免疫组织化学方法从形态学上追踪胰岛素向大鼠骨骼肌的转运。在开始持续静脉输注(10 mU·min⁻¹·kg⁻¹)FITC胰岛素(维持血糖正常)后的0、10、30和60分钟,我们对直肌进行活检。将FITC胰岛素的分布与骨骼肌血管系统中胰岛素受体(IR)、胰岛素样生长因子-I受体(IGF-IR)和小窝蛋白-1(小窝的一种蛋白质标志物)的分布进行比较。我们观察到,肌肉内皮在10分钟内对FITC胰岛素染色强烈,且这种情况持续到60分钟。内皮对FITC胰岛素的染色比肌肉中的任何其他细胞成分都更强。在肌肉内皮细胞中也通过免疫组织化学检测到了IR、IGF-IR和小窝蛋白-1。我们进一步在培养的牛主动脉内皮细胞(bAECs)中比较了它们与FITC胰岛素的细胞内分布。发现IR或IGF-IR与FITC胰岛素有相当程度的共定位。IR或IGF-IR或FITC胰岛素与小窝蛋白-1有一些但较少的重叠。IR的免疫沉淀共沉淀出小窝蛋白-1,反之,小窝蛋白-1的沉淀也带出了IR。此外,胰岛素增加了小窝蛋白-1的酪氨酸磷酸化,而制霉菌素(抑制小窝形成)阻断了胰岛素摄取。最后,胰岛素、IGF-I和IGF-I阻断抗体减少胰岛素跨transwell板上生长的bAECs转运的能力表明,除了IR外,IGF-IR也可以介导胰岛素跨内皮转运。我们得出结论,在体内,相对于血浆和肌肉间质,内皮细胞能快速摄取并浓缩胰岛素,并且在涉及小窝的过程中,IGF-IR与IR一样,可能介导胰岛素通过内皮细胞的转运。