Suppr超能文献

体内成像的证据表明,突触形成通过两种不同机制引导轴突分支的生长和分支。

Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms.

作者信息

Meyer Martin P, Smith Stephen J

机构信息

Department of Molecular and Cellular Physiology, Beckman Center, Stanford University, Stanford, California 94305, USA.

出版信息

J Neurosci. 2006 Mar 29;26(13):3604-14. doi: 10.1523/JNEUROSCI.0223-06.2006.

Abstract

To explore the relationship between axon arbor growth and synaptogenesis, developing retinal ganglion cell (RGC) axon arbors in zebrafish optic tectum were imaged in vivo at high temporal and spatial resolution using two-photon microscopy. Individual RGC axons were dually labeled by expression of a cytosolic red fluorescent protein (DsRed Express) to mark arbor structure and a fusion of the synaptic vesicle protein synaptophysin with green fluorescent protein (Syp:GFP) to mark presynaptic vesicles. Analysis of time-lapse sequences acquired at 10 min intervals revealed unexpectedly rapid kinetics of both axon branch and vesicle cluster turnover. Nascent axonal branches exhibited short average lifetimes of 19 min, and only 17% of newly extended axonal processes persisted for periods exceeding 3 h. The majority (70%) of Syp:GFP puncta formed on newly extended axonal processes. Syp:GFP puncta also exhibited short average lifetimes of 30 min, and only 34% of puncta were stabilized for periods exceeding 3 h. Moreover, strongly correlated dynamics of Syp:GFP puncta and branch structure suggest that synaptogenesis exerts strong influences on both the extension and the selective stabilization of nascent branches. First, new branches form almost exclusively at newly formed Syp:GFP puncta. Second, stabilized nascent branches invariably bear Syp:GFP puncta, and the detailed dynamics of branch retraction suggest strongly that nascent synapses can act at branch tips to arrest retraction. These observations thus provide evidence that synaptogenesis guides axon arbor growth by first promoting initial branch extension and second by selective branch stabilization.

摘要

为了探究轴突分支生长与突触形成之间的关系,利用双光子显微镜在高时空分辨率下对斑马鱼视顶盖中发育的视网膜神经节细胞(RGC)轴突分支进行了体内成像。通过表达胞质红色荧光蛋白(DsRed Express)以标记分支结构,以及将突触小泡蛋白突触素与绿色荧光蛋白融合(Syp:GFP)以标记突触前小泡,对单个RGC轴突进行双重标记。对每隔10分钟获取的延时序列分析显示,轴突分支和小泡簇周转的动力学出乎意料地快。新生轴突分支的平均寿命较短,仅为19分钟,新延伸的轴突过程中只有17%持续超过3小时。大多数(70%)的Syp:GFP亮点形成于新延伸的轴突过程上。Syp:GFP亮点的平均寿命也较短,仅为30分钟,只有34%的亮点稳定超过3小时。此外,Syp:GFP亮点与分支结构的强相关动力学表明,突触形成对新生分支的延伸和选择性稳定都有强烈影响。首先,新分支几乎只在新形成的Syp:GFP亮点处形成。其次,稳定的新生分支总是带有Syp:GFP亮点,分支回缩的详细动力学强烈表明,新生突触可以在分支末端起作用以阻止回缩。因此,这些观察结果提供了证据,表明突触形成通过首先促进初始分支延伸,其次通过选择性分支稳定来引导轴突分支生长。

相似文献

2
Stabilization of axon branch dynamics by synaptic maturation.
J Neurosci. 2006 Mar 29;26(13):3594-603. doi: 10.1523/JNEUROSCI.0069-06.2006.
3
BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo.
Development. 2005 Oct;132(19):4285-98. doi: 10.1242/dev.02017. Epub 2005 Sep 1.
5
Synapse-dependent and independent mechanisms of thalamocortical axon branching are regulated by neuronal activity.
Dev Neurobiol. 2016 Mar;76(3):323-36. doi: 10.1002/dneu.22317. Epub 2015 Jun 20.
6
In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors.
J Neurobiol. 1996 Oct;31(2):219-34. doi: 10.1002/(SICI)1097-4695(199610)31:2<219::AID-NEU7>3.0.CO;2-E.

引用本文的文献

1
2
Hebbian instruction of axonal connectivity by endogenous correlated spontaneous activity.
Science. 2024 Aug 16;385(6710):eadh7814. doi: 10.1126/science.adh7814.
4
Mutation of the ALS-/FTD-Associated RNA-Binding Protein FUS Affects Axonal Development.
J Neurosci. 2024 Jul 3;44(27):e2148232024. doi: 10.1523/JNEUROSCI.2148-23.2024.
6
Progress in cancer neuroscience.
MedComm (2020). 2023 Nov 22;4(6):e431. doi: 10.1002/mco2.431. eCollection 2023 Dec.
8
Determinants of motor neuron functional subtypes important for locomotor speed.
Cell Rep. 2023 Sep 26;42(9):113049. doi: 10.1016/j.celrep.2023.113049. Epub 2023 Sep 6.
9
Quantitative assessment of near-infrared fluorescent proteins.
Nat Methods. 2023 Oct;20(10):1605-1616. doi: 10.1038/s41592-023-01975-z. Epub 2023 Sep 4.
10
Myelination-independent functions of oligodendrocyte precursor cells in health and disease.
Nat Neurosci. 2023 Oct;26(10):1663-1669. doi: 10.1038/s41593-023-01423-3. Epub 2023 Aug 31.

本文引用的文献

1
Mammalian cadherins and protocadherins: about cell death, synapses and processing.
Curr Opin Cell Biol. 2005 Oct;17(5):446-52. doi: 10.1016/j.ceb.2005.08.008.
2
Functional imaging reveals rapid development of visual response properties in the zebrafish tectum.
Neuron. 2005 Mar 24;45(6):941-51. doi: 10.1016/j.neuron.2005.01.047.
3
Coordinated motor neuron axon growth and neuromuscular synaptogenesis are promoted by CPG15 in vivo.
Neuron. 2005 Feb 17;45(4):505-12. doi: 10.1016/j.neuron.2004.12.051.
4
Characterization of zebrafish PSD-95 gene family members.
J Neurobiol. 2005 May;63(2):91-105. doi: 10.1002/neu.20118.
5
The role of the Rho GTPases in neuronal development.
Genes Dev. 2005 Jan 1;19(1):1-49. doi: 10.1101/gad.1256405.
7
In vivo trafficking and targeting of N-cadherin to nascent presynaptic terminals.
J Neurosci. 2004 Oct 13;24(41):9027-34. doi: 10.1523/JNEUROSCI.5399-04.2004.
8
Cellular and molecular mechanisms of presynaptic assembly.
Nat Rev Neurosci. 2004 May;5(5):385-99. doi: 10.1038/nrn1370.
9
Synaptophysin: leading actor or walk-on role in synaptic vesicle exocytosis?
Bioessays. 2004 Apr;26(4):445-53. doi: 10.1002/bies.20012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验