Hussain Rifat J, Stumpo Deborah J, Blackshear Perry J, Lenox Robert H, Abel Ted, McNamara Robert K
Department of Psychiatry, University of Pennsylvania School of Medicine, Clinical Research Building, Philadelphia, Pennsylvania, USA.
Hippocampus. 2006;16(5):495-503. doi: 10.1002/hipo.20177.
The myristoylated alanine-rich C kinase substrate (MARCKS) is a primary protein kinase C (PKC) substrate in brain thought to transduce PKC signaling into alterations in the filamentous (F) actin cytoskeleton. Within the adult hippocampus, MARCKS is highly expressed in the dentate gyrus (DG)-CA3 mossy fiber pathway, but is expressed at low levels in the CA3-CA1 Schaffer collateral-CA1 pathway. We have previously demonstrated that 50% reductions in MARCKS expression in heterozygous Marcks mutant mice produce robust deficits in spatial reversal learning, but not contextual fear conditioning, suggesting that only specific aspects of hippocampal function are impaired by reduction in MARCKS expression. To further elucidate the role of MARCKS in hippocampal synaptic plasticity, in the present study we examined basal synaptic transmission, paired-pulse facilitation, post-tetanic potentiation, and long-term potentiation (LTP) in the hippocampal mossy fiber-CA3 and Schaffer collateral-CA1 pathways of heterozygous Marcks mutant and wild-type mice. We found that LTP is significantly impaired in the mossy fiber-CA3 pathway, but not in the Schaffer collateral-CA1 pathway, in heterozygous Marcks mutant mice, whereas basal synaptic transmission, paired-pulse facilitation, and post-tetanic potentiation are unaffected in both pathways. These findings indicate that a 50% reduction in MARCKS expression impairs processes required for long-term, but not short-term, synaptic plasticity in the mossy fiber-CA3 pathway. The implications of these findings for the role of the mossy fiber-CA3 pathway in hippocampus-dependent learning processes are discussed.
豆蔻酰化富含丙氨酸的蛋白激酶C底物(MARCKS)是大脑中蛋白激酶C(PKC)的主要底物,被认为可将PKC信号转导为丝状(F)肌动蛋白细胞骨架的改变。在成年海马体中,MARCKS在齿状回(DG)-CA3苔藓纤维通路中高度表达,但在CA3-CA1 谢弗侧支-CA1通路中表达水平较低。我们之前已经证明,杂合子Marcks突变小鼠中MARCKS表达降低50%会在空间反转学习中产生明显缺陷,但在情境恐惧条件反射中则不会,这表明MARCKS表达降低仅损害海马体功能的特定方面。为了进一步阐明MARCKS在海马体突触可塑性中的作用,在本研究中,我们检测了杂合子Marcks突变小鼠和野生型小鼠海马体苔藓纤维-CA3和谢弗侧支-CA1通路中的基础突触传递、双脉冲易化、强直后增强和长时程增强(LTP)。我们发现,杂合子Marcks突变小鼠的苔藓纤维-CA3通路中的LTP明显受损,但谢弗侧支-CA1通路中则未受损,而两条通路中的基础突触传递、双脉冲易化和强直后增强均未受影响。这些发现表明,MARCKS表达降低50%会损害苔藓纤维-CA3通路中长期而非短期突触可塑性所需的过程。我们讨论了这些发现对苔藓纤维-CA3通路在海马体依赖性学习过程中的作用的影响。