Suppr超能文献

镍:一种对依赖氢的根瘤菌生长和大豆叶片中脲酶活性表达都必需的微量元素。

Nickel: A micronutrient element for hydrogen-dependent growth of Rhizobium japonicum and for expression of urease activity in soybean leaves.

机构信息

Laboratory for Nitrogen Fixation Research, Oregon State University, Corvallis, Oregon 97331.

出版信息

Proc Natl Acad Sci U S A. 1983 Apr;80(8):2253-7. doi: 10.1073/pnas.80.8.2253.

Abstract

Soybean plants and Rhizobium japonicum 122 DES, a hydrogen uptake-positive strain, were cultured in media purified to remove Ni. Supplemental Ni had no significant effect on the dry matter or total N content of plants. However, the addition of Ni to both nitrate-grown and symbiotically grown plants resulted in a 7- to 10-fold increase in urease activity (urea amidohydrolase, EC 3.5.1.5) in leaves and significantly increased the hydrogenase activity (EC 1.18.3.1) in isolated nodule bacteroids. When cultured under chemolithotrophic conditions, free-living R. japonicum required Ni for growth and for the expression of hydrogenase activity. Hydrogenase activity was minimal or not detectable in cells incubated either without Ni or with Ni and chloramphenicol. Ni is required for derepression of hydrogenase activity and apparently protein synthesis is necessary for the participation of Ni in hydrogenase expression. The addition of Cr, V, Sn, and Pb in place of Ni failed to stimulate the activity of hydrogenase in R. japonicum and urease in soybean leaves. The evidence indicates that Ni is an important micronutrient element in the biology of the soybean plant and R. japonicum.

摘要

大豆植株和根瘤菌 122DES(一种吸氢阳性菌株)在去除镍的培养基中培养。补充镍对植物的干物质或总氮含量没有显著影响。然而,将镍添加到硝酸盐生长和共生生长的植物中,导致叶片中的脲酶活性(尿素酰胺水解酶,EC 3.5.1.5)增加了 7-10 倍,并且显著增加了分离的根瘤菌细菌的氢化酶活性(EC 1.18.3.1)。当在化能自养条件下培养时,自由生活的根瘤菌需要镍来生长和表达氢化酶活性。在没有镍或有镍和氯霉素的情况下孵育的细胞中,氢化酶活性最小或无法检测到。镍对于氢化酶活性的去阻遏是必需的,显然蛋白质合成对于镍参与氢化酶表达是必需的。用 Cr、V、Sn 和 Pb 代替镍,未能刺激根瘤菌中的氢化酶活性和大豆叶片中的脲酶活性。这一证据表明,镍是大豆植株和根瘤菌生物学中的一种重要微量元素。

相似文献

2
Nickel as a micronutrient element for plants.
Biofactors. 1988 Jan;1(1):11-6.
3
Nickel is a component of hydrogenase in Rhizobium japonicum.
J Bacteriol. 1984 Jul;159(1):153-8. doi: 10.1128/jb.159.1.153-158.1984.
4
Nickel accumulation and storage in Bradyrhizobium japonicum.
Appl Environ Microbiol. 1990 Jun;56(6):1905-11. doi: 10.1128/aem.56.6.1905-1911.1990.
5
Rhizobium japonicum hydrogenase: purification to homogeneity from soybean nodules, and molecular characterization.
Arch Biochem Biophys. 1985 Mar;237(2):504-12. doi: 10.1016/0003-9861(85)90303-0.
6
Hidden Nickel Deficiency? Nickel Fertilization via Soil Improves Nitrogen Metabolism and Grain Yield in Soybean Genotypes.
Front Plant Sci. 2018 May 8;9:614. doi: 10.3389/fpls.2018.00614. eCollection 2018.
7
Nickel Availability in Soil as Influenced by Liming and Its Role in Soybean Nitrogen Metabolism.
Front Plant Sci. 2016 Sep 8;7:1358. doi: 10.3389/fpls.2016.01358. eCollection 2016.
8
Regulation of hydrogenase in Rhizobium japonicum.
J Bacteriol. 1979 Feb;137(2):825-9. doi: 10.1128/jb.137.2.825-829.1979.
9
Revertible hydrogen uptake-deficient mutants of Rhizobium japonicum.
J Bacteriol. 1981 May;146(2):614-20. doi: 10.1128/jb.146.2.614-620.1981.

引用本文的文献

1
Metal nutrition and transport in the process of symbiotic nitrogen fixation.
Plant Commun. 2024 Apr 8;5(4):100829. doi: 10.1016/j.xplc.2024.100829. Epub 2024 Feb 1.
2
Bioaccumulation of nickel in tomato plants: risks to human health and agro-environmental impacts.
Environ Monit Assess. 2018 May 1;190(6):317. doi: 10.1007/s10661-018-6658-7.
4
Fixating on metals: new insights into the role of metals in nodulation and symbiotic nitrogen fixation.
Front Plant Sci. 2014 Feb 13;5:45. doi: 10.3389/fpls.2014.00045. eCollection 2014.
5
Hydrogenase in Bradyrhizobium japonicum: genetics, regulation and effect on plant growth.
World J Microbiol Biotechnol. 1993 Nov;9(6):615-24. doi: 10.1007/BF00369567.
6
Comparison of two ecotypes of the metal hyperaccumulator Thlaspi caerulescens (J. & C. PRESL) at the transcriptional level.
Protoplasma. 2010 Mar;239(1-4):81-93. doi: 10.1007/s00709-009-0085-0. Epub 2009 Nov 25.
7
Sodium stimulation of uptake hydrogenase activity in symbiotic Rhizobium.
Plant Physiol. 1986 Oct;82(2):494-8. doi: 10.1104/pp.82.2.494.
8
Comparative Phloem mobility of nickel in nonsenescent plants.
Plant Physiol. 1986 Jun;81(2):689-91. doi: 10.1104/pp.81.2.689.
9
Structure and possible ureide degrading function of the ubiquitous urease of soybean.
Plant Physiol. 1985 Nov;79(3):794-800. doi: 10.1104/pp.79.3.794.
10
Effects of Ni Deficiency on Some Nitrogen Metabolites in Cowpeas (Vigna unguiculata L. Walp).
Plant Physiol. 1985 Oct;79(2):474-9. doi: 10.1104/pp.79.2.474.

本文引用的文献

1
Transport of nitrogen in the xylem of soybean plants.
Plant Physiol. 1979 Sep;64(3):411-6. doi: 10.1104/pp.64.3.411.
3
THE ESSENTIALITY OF COBALT FOR SOYBEAN PLANTS GROWN UNDER SYMBIOTIC CONDITIONS.
Proc Natl Acad Sci U S A. 1961 Jan;47(1):24-36. doi: 10.1073/pnas.47.1.24.
4
Contamination in trace element analysis and its control.
Methods Biochem Anal. 1957;5:273-335. doi: 10.1002/9780470110218.ch6.
5
Presence of nickel in factor F430 from Methanobacterium bryantii.
Biochem Biophys Res Commun. 1980 Feb 27;92(4):1196-201. doi: 10.1016/0006-291x(80)90413-1.
8
Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus.
J Bacteriol. 1981 Mar;145(3):1144-9. doi: 10.1128/jb.145.3.1144-1149.1981.
9
Chemoautotrophic growth of hydrogen-uptake-positive strains of Rhizobium japonicum.
J Bacteriol. 1980 Feb;141(2):664-70. doi: 10.1128/jb.141.2.664-670.1980.
10
Hydrogenase from Vibrio succinogenes, a nickel protein.
FEBS Lett. 1982 Aug 23;145(2):230-4. doi: 10.1016/0014-5793(82)80173-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验