Suppr超能文献

在一株缺乏线粒体呼吸的莱茵衣藻突变体中抑制甘醇酸盐和 D-乳酸盐代谢。

Inhibition of glycolate and D-lactate metabolism in a Chlamydomonas reinhardtii mutant deficient in mitochondrial respiration.

机构信息

Department of Biochemistry, Michigan State University, East Lansing, MI 48824.

出版信息

Proc Natl Acad Sci U S A. 1987 Mar;84(6):1555-9. doi: 10.1073/pnas.84.6.1555.

Abstract

The possibility that glycolate oxidation in unicellular green algae is linked to mitochondrial electron transport, rather than to peroxisomal metabolism as in higher plants and animals, was studied in a mutant of Chlamydomonas reinhardtii (dk97) deficient in cytochrome oxidase. This mutant had normal rates of dark respiration (40 +/- 15 mumol of O(2) uptake per hr per mg of chlorophyll) but had only 11% of wild-type levels of cytochrome oxidase activity. Salicylhydroxamic acid (SHAM) reduced the dark respiration rate of dk97 cells by 71%, but cyanide did not significantly inhibit this rate. During photosynthesis in the presence of SHAM, glycolate oxidation was blocked, resulting in glycolate accumulation and excretion by mutant cells but not by wild-type Chlamydomonas. D-Lactate, which accumulated after brief periods of anaerobiosis in Chlamydomonas, was reoxidized by air-grown cells only aerobically in the light, and reoxidation of D-lactate was blocked by SHAM in the dk97 cells. Thus, glycolate and D-lactate dehydrogenase activities are both linked to mitochondrial electron transport in Chlamydomonas. During photosynthetic (14)CO(2) fixation by dk97 cells in the presence of SHAM, (14)C-labeled tricarboxylic acid cycle intermediates accumulated, indicating that, in Chlamydomonas, mitochondrial respiration functions during photosynthesis.

摘要

研究了一种单细胞绿藻莱茵衣藻(Chlamydomonas reinhardtii)突变体(dk97)中糖酸氧化与线粒体电子传递的关系,而不是像高等植物和动物那样与过氧化物酶体代谢有关。这种突变体具有正常的暗呼吸速率(每小时每毫克叶绿素吸收 40 +/- 15 微摩尔 O(2)),但细胞色素氧化酶活性只有野生型的 11%。水杨羟肟酸(SHAM)使 dk97 细胞的暗呼吸速率降低了 71%,但氰化物并没有显著抑制这种速率。在 SHAM 存在下进行光合作用时,糖酸氧化被阻断,导致突变细胞积累并排出糖酸,但野生型衣藻没有。短暂缺氧后在衣藻中积累的 D-乳酸只能在有氧条件下通过空气培养的细胞在光照下被重新氧化,并且 dk97 细胞中的 SHAM 阻断了 D-乳酸的重新氧化。因此,糖酸和 D-乳酸脱氢酶的活性都与衣藻中的线粒体电子传递有关。在 dk97 细胞存在 SHAM 的情况下进行光合(14)CO(2)固定时,(14)C 标记的三羧酸循环中间产物积累,表明在衣藻中,线粒体呼吸在光合作用期间起作用。

相似文献

2
Glycolate metabolism in algal chloroplasts: inhibition by salicylhydroxamic acid (SHAM).
Physiol Plant. 2002 Oct;116(2):264-270. doi: 10.1034/j.1399-3054.2002.1160217.x.
3
Glycolate production by a Chlamydomonas reinhardtii mutant lacking carbon-concentrating mechanism.
J Biotechnol. 2021 Jul 20;335:39-46. doi: 10.1016/j.jbiotec.2021.06.009. Epub 2021 Jun 4.
4
Glycolate Metabolism and Excretion by Chlamydomonas reinhardtii.
Plant Physiol. 1986 Nov;82(3):821-6. doi: 10.1104/pp.82.3.821.
5
Aminooxyacetate stimulation of glycolate formation and excretion by chlamydomonas.
Plant Physiol. 1983 Aug;72(4):1075-83. doi: 10.1104/pp.72.4.1075.
6
Crossing and selection of Chlamydomonas reinhardtii strains for biotechnological glycolate production.
Appl Microbiol Biotechnol. 2022 May;106(9-10):3539-3554. doi: 10.1007/s00253-022-11933-y. Epub 2022 May 5.
10
Chlororespiration and the process of carotenoid biosynthesis.
Biochim Biophys Acta. 2001 Aug 17;1506(2):133-42. doi: 10.1016/s0005-2728(01)00190-6.

引用本文的文献

1
Algae as New Kids in the Beneficial Plant Microbiome.
Front Plant Sci. 2021 Feb 4;12:599742. doi: 10.3389/fpls.2021.599742. eCollection 2021.
2
Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis.
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):E8344-E8353. doi: 10.1073/pnas.1613446113. Epub 2016 Dec 1.
3
Identification of the Elusive Pyruvate Reductase of Chlamydomonas reinhardtii Chloroplasts.
Plant Cell Physiol. 2016 Jan;57(1):82-94. doi: 10.1093/pcp/pcv167. Epub 2015 Nov 15.
5
Variations in the Alternative Oxidase in Chlamydomonas Grown in Air or High CO(2).
Plant Physiol. 1989 Mar;89(3):958-62. doi: 10.1104/pp.89.3.958.

本文引用的文献

1
Glycolate Metabolism and Excretion by Chlamydomonas reinhardtii.
Plant Physiol. 1986 Nov;82(3):821-6. doi: 10.1104/pp.82.3.821.
2
O(2) uptake in the light in chlamydomonas: evidence for persistent mitochondrial respiration.
Plant Physiol. 1985 Sep;79(1):225-30. doi: 10.1104/pp.79.1.225.
6
Aminooxyacetate stimulation of glycolate formation and excretion by chlamydomonas.
Plant Physiol. 1983 Aug;72(4):1075-83. doi: 10.1104/pp.72.4.1075.
7
Cytochemical localization of glycolate dehydrogenase in mitochondria of chlamydomonas.
Plant Physiol. 1976 Sep;58(3):315-9. doi: 10.1104/pp.58.3.315.
8
Intracellular localization of glycolate dehydrogenase in a blue-green alga.
Plant Physiol. 1976 Aug;58(2):199-202. doi: 10.1104/pp.58.2.199.
9
MITOTIC REPLICATION OF DEOXYRIBONUCLEIC ACID IN CHLAMYDOMONAS REINHARDI.
Proc Natl Acad Sci U S A. 1960 Jan;46(1):83-91. doi: 10.1073/pnas.46.1.83.
10
THE FERMENTATION OF GLUCOSE BY CHLORELLA VULGARIS.
Biochem J. 1963 Nov;89(2):308-15. doi: 10.1042/bj0890308.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验