Suppr超能文献

中度缺氧影响大鼠初级感觉神经元的兴奋性并阻断树突毒素敏感的钾电流。

Moderate hypoxia influences excitability and blocks dendrotoxin sensitive K+ currents in rat primary sensory neurones.

作者信息

Gruss Marco, Ettorre Giovanni, Stehr Annette Jana, Henrich Michael, Hempelmann Gunter, Scholz Andreas

机构信息

Physiologisches Institut, Justus-Liebig-Universität, 35385 Giessen, Germany.

出版信息

Mol Pain. 2006 Mar 31;2:12. doi: 10.1186/1744-8069-2-12.

Abstract

Hypoxia alters neuronal function and can lead to neuronal injury or death especially in the central nervous system. But little is known about the effects of hypoxia in neurones of the peripheral nervous system (PNS), which survive longer hypoxic periods. Additionally, people have experienced unpleasant sensations during ischemia which are dedicated to changes in conduction properties or changes in excitability in the PNS. However, the underlying ionic conductances in dorsal root ganglion (DRG) neurones have not been investigated in detail. Therefore we investigated the influence of moderate hypoxia (27.0 +/- 1.5 mmHg) on action potentials, excitability and ionic conductances of small neurones in a slice preparation of DRGs of young rats. The neurones responded within a few minutes non-uniformly to moderate hypoxia: changes of excitability could be assigned to decreased outward currents in most of the neurones (77%) whereas a smaller group (23%) displayed increased outward currents in Ringer solution. We were able to attribute most of the reduction in outward-current to a voltage-gated K+ current which activated at potentials positive to -50 mV and was sensitive to 50 nM alpha-dendrotoxin (DTX). Other toxins that inhibit subtypes of voltage gated K+ channels, such as margatoxin (MgTX), dendrotoxin-K (DTX-K), r-tityustoxin Kalpha (TsTX-K) and r-agitoxin (AgTX-2) failed to prevent the hypoxia induced reduction. Therefore we could not assign the hypoxia sensitive K+ current to one homomeric KV channel type in sensory neurones. Functionally this K+ current blockade might underlie the increased action potential (AP) duration in these neurones. Altogether these results, might explain the functional impairment of peripheral neurones under moderate hypoxia.

摘要

缺氧会改变神经元功能,并可能导致神经元损伤或死亡,尤其是在中枢神经系统中。但对于外周神经系统(PNS)神经元在较长缺氧期存活时缺氧的影响,人们了解甚少。此外,人们在局部缺血期间会经历不愉快的感觉,这与PNS中传导特性的变化或兴奋性的改变有关。然而,背根神经节(DRG)神经元中潜在的离子电导尚未得到详细研究。因此,我们研究了中度缺氧(27.0±1.5 mmHg)对幼鼠DRG切片制备中小神经元动作电位、兴奋性和离子电导的影响。神经元在几分钟内对中度缺氧的反应不一致:在大多数神经元(77%)中,兴奋性的变化可归因于外向电流的减少,而较小的一组(23%)在林格氏液中显示外向电流增加。我们能够将大部分外向电流的减少归因于一种电压门控K+电流,该电流在正于-50 mV的电位时激活,并且对50 nMα-树眼镜蛇毒素(DTX)敏感。其他抑制电压门控K+通道亚型的毒素,如玛格毒素(MgTX)、树眼镜蛇毒素-K(DTX-K)、r-墨西哥蝎毒素Kα(TsTX-K)和r-阿吉毒素(AgTX-2),未能阻止缺氧诱导的减少。因此,我们无法将缺氧敏感的K+电流归属于感觉神经元中的一种同聚体KV通道类型。在功能上,这种K+电流阻断可能是这些神经元动作电位(AP)持续时间增加的基础。总之,这些结果可能解释了中度缺氧条件下外周神经元的功能损害。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6bba/1484470/e4e886250e4b/1744-8069-2-12-1.jpg

相似文献

2
Single voltage-gated K+ channels and their functions in small dorsal root ganglion neurones of rat.
J Physiol. 1996 Jun 1;493 ( Pt 2)(Pt 2):393-408. doi: 10.1113/jphysiol.1996.sp021391.
3
Scorpion toxin block of the early K+ current (IKf) in rat dorsal root ganglion neurones.
J Physiol. 1997 Sep 1;503 ( Pt 2)(Pt 2):285-301. doi: 10.1111/j.1469-7793.1997.285bh.x.
5
Blockade by dendrotoxin homologues of voltage-dependent K+ currents in cultured sensory neurones from neonatal rats.
Br J Pharmacol. 1994 Nov;113(3):959-67. doi: 10.1111/j.1476-5381.1994.tb17086.x.
6
Potassium channels Kv1.1, Kv1.2 and Kv1.6 influence excitability of rat visceral sensory neurons.
J Physiol. 2002 Jun 1;541(Pt 2):467-82. doi: 10.1113/jphysiol.2001.018333.
7
Α-Dendrotoxin-sensitive Kv1 channels contribute to conduction failure of polymodal nociceptive C-fibers from rat coccygeal nerve.
J Neurophysiol. 2016 Feb 1;115(2):947-57. doi: 10.1152/jn.00786.2014. Epub 2015 Nov 25.
9
A-type potassium currents dominate repolarisation of neonatal rat primary auditory neurones in situ.
Neuroscience. 2002;109(1):169-82. doi: 10.1016/s0306-4522(01)00454-7.
10
Dendrotoxin-sensitive K+ channels in dorsal root ganglion cells.
Neurosci Lett. 1988 Oct 31;93(1):49-55. doi: 10.1016/0304-3940(88)90011-0.

引用本文的文献

1
Interdependence of cellular and network properties in respiratory rhythm generation.
Proc Natl Acad Sci U S A. 2024 May 7;121(19):e2318757121. doi: 10.1073/pnas.2318757121. Epub 2024 May 1.
2
Interdependence of cellular and network properties in respiratory rhythmogenesis.
bioRxiv. 2023 Nov 2:2023.10.30.564834. doi: 10.1101/2023.10.30.564834.
3
Voltage-gated potassium channel dysfunction in dorsal root ganglia contributes to the exaggerated exercise pressor reflex in rats with chronic heart failure.
Am J Physiol Heart Circ Physiol. 2021 Aug 1;321(2):H461-H474. doi: 10.1152/ajpheart.00256.2021. Epub 2021 Jul 16.
4
Action Potential Broadening in Capsaicin-Sensitive DRG Neurons from Frequency-Dependent Reduction of Kv3 Current.
J Neurosci. 2017 Oct 4;37(40):9705-9714. doi: 10.1523/JNEUROSCI.1703-17.2017. Epub 2017 Sep 6.
5
TRP channels in oxygen physiology: distinctive functional properties and roles of TRPA1 in O sensing.
Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):464-482. doi: 10.2183/pjab.93.028.
6
Redox-sensitive transient receptor potential channels in oxygen sensing and adaptation.
Pflugers Arch. 2016 Jan;468(1):85-97. doi: 10.1007/s00424-015-1716-2. Epub 2015 Jul 7.
8
Exercise and DHA prevent the negative effects of hypoxia on EEG and nerve conduction velocity.
High Alt Med Biol. 2013 Dec;14(4):360-6. doi: 10.1089/ham.2012.1125.
9
TRP channels as sensors of oxygen availability.
Pflugers Arch. 2013 Aug;465(8):1075-85. doi: 10.1007/s00424-013-1237-9. Epub 2013 Feb 17.
10
TRP channels: sensors and transducers of gasotransmitter signals.
Front Physiol. 2012 Aug 9;3:324. doi: 10.3389/fphys.2012.00324. eCollection 2012.

本文引用的文献

1
Thermosensitivity of the two-pore domain K+ channels TREK-2 and TRAAK.
J Physiol. 2005 Apr 1;564(Pt 1):103-16. doi: 10.1113/jphysiol.2004.081059. Epub 2005 Jan 27.
2
Co-expression of heat sensitive vanilloid receptor subtypes in rat dorsal root ganglion neurons.
Neuroreport. 2003 Dec 2;14(17):2251-5. doi: 10.1097/00001756-200312020-00023.
3
ThermoTRP channels and beyond: mechanisms of temperature sensation.
Nat Rev Neurosci. 2003 Jul;4(7):529-39. doi: 10.1038/nrn1141.
4
Intracellular mechanisms of hypoxia-induced calcium increase in rat sensory neurons.
Arch Biochem Biophys. 2003 Feb 15;410(2):212-21. doi: 10.1016/s0003-9861(02)00682-3.
6
O2-sensitive K+ channels in immortalised rat chromaffin-cell-derived MAH cells.
J Physiol. 2002 Dec 15;545(3):807-18. doi: 10.1113/jphysiol.2002.028415.
7
Adaptive responses of vertebrate neurons to hypoxia.
J Exp Biol. 2002 Dec;205(Pt 23):3579-86. doi: 10.1242/jeb.205.23.3579.
8
Oxygen deprivation induced cell death: an update.
Apoptosis. 2002 Dec;7(6):475-82. doi: 10.1023/a:1020668923852.
9
How does glucose generate oxidative stress in peripheral nerve?
Int Rev Neurobiol. 2002;50:3-35. doi: 10.1016/s0074-7742(02)50071-4.
10
Sensory neurons respond to hypoxia with NO production associated with mitochondria.
Mol Cell Neurosci. 2002 Jun;20(2):307-22. doi: 10.1006/mcne.2002.1111.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验