Graham L A, Trumpower B L
Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756.
J Biol Chem. 1991 Nov 25;266(33):22485-92.
We have used site-directed mutagenesis of the Saccharomyces cerevisiae Rieske iron-sulfur protein gene (RIP 1) to convert cysteines 159, 164, 178, and 180 to serines, and to convert histidines 161 and 181 to arginines. These 4 cysteines and 2 histidines are conserved in all Rieske proteins sequenced to date, and 4 of these 6 residues are thought to ligate the iron-sulfur cluster to the apoprotein. We have also converted histidine 184 to arginine. This histidine is conserved only in respiring organisms. The site-directed mutations of the six fully conserved putative iron-sulfur cluster ligands result in an inactive iron-sulfur protein, lacking iron-sulfur cluster, and failure of the yeast to grow on nonfermentable carbon sources. In contrast, when histidine 184 is replaced by arginine, the iron-sulfur cluster is assembled properly and the yeast grow on nonfermentable carbon sources. The site-directed mutations of the 6 fully conserved residues do not prevent post-translational import of iron-sulfur protein precursor into mitochondria, nor do the mutations prevent processing of iron-sulfur protein precursor to mature size protein by mitochondrial proteases. Optical spectra of mitochondria from the six mutants indicate that cytochrome b is normal, in contrast to the deranged spectrum of cytochrome b which results when the iron-sulfur protein gene is deleted. In addition, mature size iron-sulfur apoprotein is associated with cytochrome bc1 complex purified from a site-directed mutant in which iron-sulfur cluster is not inserted. These results indicate that mature size iron-sulfur apoprotein, lacking iron-sulfur cluster, is inserted into the cytochrome bc1 complex, where it interacts with and preserves the optical properties of cytochrome b. Insertion of the iron-sulfur cluster is not an obligatory prerequisite to processing of the protein to its final size. Either the processing protease cannot distinguish between iron-sulfur protein with or without the iron-sulfur cluster, or insertion of the iron-sulfur cluster occurs after the protein is processed to its mature size, possibly after it is assembled in the cytochrome bc1 complex.
我们利用酿酒酵母 Rieske 铁硫蛋白基因(RIP 1)的定点诱变技术,将半胱氨酸 159、164、178 和 180 转换为丝氨酸,并将组氨酸 161 和 181 转换为精氨酸。这 4 个半胱氨酸和 2 个组氨酸在迄今测序的所有 Rieske 蛋白中都是保守的,并且这 6 个残基中的 4 个被认为将铁硫簇与脱辅基蛋白连接起来。我们还将组氨酸 184 转换为精氨酸。这个组氨酸仅在进行呼吸作用的生物体中保守。这六个完全保守的假定铁硫簇配体的定点突变导致铁硫蛋白失活,缺乏铁硫簇,并且酵母无法在非发酵碳源上生长。相比之下,当组氨酸 184 被精氨酸取代时,铁硫簇能够正确组装,酵母能够在非发酵碳源上生长。这 6 个完全保守残基的定点突变并不妨碍铁硫蛋白前体的翻译后导入线粒体,这些突变也不会阻止线粒体蛋白酶将铁硫蛋白前体加工成成熟大小的蛋白。来自这六个突变体的线粒体的光谱表明细胞色素 b 是正常的,这与铁硫蛋白基因缺失时细胞色素 b 的紊乱光谱形成对比。此外,成熟大小的铁硫脱辅基蛋白与从一个未插入铁硫簇的定点突变体中纯化的细胞色素 bc1 复合物相关联。这些结果表明,缺乏铁硫簇的成熟大小的铁硫脱辅基蛋白被插入到细胞色素 bc1 复合物中,在那里它与细胞色素 b 相互作用并保留其光学性质。铁硫簇的插入不是将蛋白质加工到其最终大小的必要先决条件。要么加工蛋白酶无法区分有或没有铁硫簇的铁硫蛋白,要么铁硫簇的插入发生在蛋白质被加工成成熟大小之后,可能是在它组装到细胞色素 bc1 复合物之后。