Liang Y, McMeeking R M, Evans A G
Materials Department, University of California, Santa Barbara, CA 93106, USA.
J Theor Biol. 2006 Sep 7;242(1):142-50. doi: 10.1016/j.jtbi.2006.02.008. Epub 2006 Mar 31.
An explicit finite element scheme is developed for biological muscular hydrostats such as squid tentacles, octopus arms and elephant trunks. The scheme is implemented by embedding muscle fibers in finite elements. In any given element, the fiber orientation can be assigned arbitrarily and multiple muscle directions can be simulated. The mechanical stress in each muscle fiber is the sum of active and passive parts. The active stress is taken to be a function of activation state, muscle fiber shortening velocity and fiber strain; while the passive stress depends only on the strain. This scheme is tested by simulating extension of a squid tentacle during prey capture; our numerical predictions are in close correspondence with existing experimental results. It is shown that the present finite element scheme can successfully simulate more complex behaviors such as torsion of a squid tentacle and the bending behavior of octopus arms or elephant trunks.
针对诸如鱿鱼触手、章鱼臂和象鼻等生物肌肉静水骨骼,开发了一种显式有限元方案。该方案通过将肌肉纤维嵌入有限元中来实现。在任何给定单元中,纤维方向可以任意指定,并且可以模拟多个肌肉方向。每个肌肉纤维中的机械应力是主动部分和被动部分的总和。主动应力被视为激活状态、肌肉纤维缩短速度和纤维应变的函数;而被动应力仅取决于应变。通过模拟鱿鱼触手在捕食过程中的伸展对该方案进行了测试;我们的数值预测与现有的实验结果密切相符。结果表明,当前的有限元方案能够成功模拟更复杂的行为,如鱿鱼触手的扭转以及章鱼臂或象鼻的弯曲行为。