Ishikawa Fumihiko, Shimazu Hideki, Shultz Leonard D, Fukata Mitsuhiro, Nakamura Ryu, Lyons Bonnie, Shimoda Kazuya, Shimoda Shinji, Kanemaru Takaaki, Nakamura Kei-Ichiro, Ito Hiroyuki, Kaji Yoshikazu, Perry Anthony C F, Harada Mine
Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
FASEB J. 2006 May;20(7):950-2. doi: 10.1096/fj.05-4863fje. Epub 2006 Apr 3.
To obtain insights into the cardiomyogenic potential of hematopoietic tissue, we intravenously (i.v.) injected purified hematopoietic stem/progenitor cells into newborn recipients that may fully potentiate the developmental plasticity of stem cells. Transplantation of mouse bone marrow (BM) lineage antigen-negative (Lin-) cells resulted in the generation of the cells that displayed cardiomyocyte-specific antigenic profiles and contractile function when transplanted into syngeneic newborn recipients. To clarify the mechanism underlying the cardiomyogenic potential, green fluorescent protein (GFP)-labeled BM Lin-ScaI+ hematopoietic progenitors were transplanted into neonatal mice constitutively expressing cyan fluorescence protein (CFP). Lambda image acquisition and linear unmixing analysis using confocal microscopy successfully separated GFP and CFP, and revealed that donor GFP+ cardiomyocytes coexpressed host-derived CFP. We further reconstituted human hemopoietic- and immune systems in mice by injecting human cord blood (CB)-derived Lin-CD34+CD38- hematopoietic stem cells (HSCs) into neonatal T cell(-)B cell(-)NK cell- immune-deficient NOD/SCID/IL2rgamma(null) mice. Fluoroescence in situ hybridization analysis of recipient cardiac tissues demonstrated that human and murine chromosomes were colocalized in the same cardiomyocytes, indicating that cell fusion occurred between human hematopoietic progeny and mouse cardiomyocytes. These syngeneic- and xenogeneic neonatal transplantations provide compelling evidence that hematopoietic stem/progenitor cells contribute to the postnatal generation of cardiomyocytes through cell fusion, not through transdifferentiation.
为深入了解造血组织的心肌生成潜能,我们将纯化的造血干/祖细胞静脉注射到新生受体中,这些受体可能会充分增强干细胞的发育可塑性。将小鼠骨髓(BM)谱系抗原阴性(Lin-)细胞移植到同基因新生受体中后,可产生显示心肌细胞特异性抗原谱和收缩功能的细胞。为阐明心肌生成潜能的潜在机制,将绿色荧光蛋白(GFP)标记的BM Lin-ScaI+造血祖细胞移植到组成性表达青色荧光蛋白(CFP)的新生小鼠中。使用共聚焦显微镜进行的λ图像采集和线性解混分析成功分离了GFP和CFP,并显示供体GFP+心肌细胞共表达宿主来源的CFP。我们还通过将人脐血(CB)来源的Lin-CD34+CD38-造血干细胞(HSCs)注射到新生T细胞(-)B细胞(-)NK细胞免疫缺陷的NOD/SCID/IL2rgamma(null)小鼠中,在小鼠体内重建了人类造血和免疫系统。对受体心脏组织的荧光原位杂交分析表明,人和鼠的染色体共定位于同一心肌细胞中,这表明人类造血后代与小鼠心肌细胞之间发生了细胞融合。这些同基因和异种新生移植提供了令人信服的证据,即造血干/祖细胞通过细胞融合而非转分化对出生后心肌细胞的生成做出贡献。