Royden H L
DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA.
Proc Natl Acad Sci U S A. 1970 Mar;65(3):497-9. doi: 10.1073/pnas.65.3.497.
Let T(g) be the Teichmüller space of compact Riemann surfaces of genus g. Then T(g) is the space of conformal structures on a fixed surface W modulo equivalence under conformal maps homotopic to the identity. The Teichmüller modular group [unk] is the group of all orientation preserving homeomorphisms of W onto itself modulo those which are homotopic to the identity. Each element of [unk] induces a biholomorphic map of T(g) onto itself, and the present note outlines a proof of the converse statement: Every biholomorphic map of T(g) onto itself is induced by an element of [unk]. It is first shown that every isometry of T(g) with the Teichmüller metric arises from an element of [unk]. The Teichmüller metric is then shown to be the Kobayashi metric for T(g) and hence invariant under biholomorphic maps.
设(T(g))为亏格为(g)的紧致黎曼曲面的泰希米勒空间。那么(T(g))是固定曲面(W)上共形结构的空间,模以与恒等映射同伦的共形映射下的等价关系。泰希米勒模群(\Gamma)是(W)到自身的所有保定向同胚映射的群,模以那些与恒等映射同伦的映射。(\Gamma)的每个元素诱导(T(g))到自身的双全纯映射,本笔记概述了逆命题的证明:(T(g))到自身的每个双全纯映射都由(\Gamma)的一个元素诱导。首先证明(T(g))关于泰希米勒度量的每个等距映射都源自(\Gamma)的一个元素。然后证明泰希米勒度量是(T(g))的小林度量,因此在双全纯映射下是不变的。